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1 Introduction  

Epidemiological research has received renewed attention in recent years as a result of the COVID-

19 pandemic. In 2025, it remains a major public health concern. The demographic literature 

documents an unusually high and regionally heterogeneous COVID-19 mortality burden in Russia 

(Timonin et al., 2021; Shkolnikov et al., 2022). Given this context, this paper analyzes the effects 

of vaccination and population mobility on transmission and mortality across Russia’s largest 

regions using an instrumental variables approach within a panel data framework. In particular, I 

model epidemic dynamics as a function of vaccination uptake and public behavior, treating both 

variables as endogenous.  

Vaccination dynamics are explained by the growth rate of confirmed cases (an information 

variable capturing perceived risk), a short-run post-policy window following the introduction of 

regional QR-code requirements, and news coverage of the potential approval of the Sputnik V 

vaccine by the World Health Organization interacted with the mandate indicator. The latter two 

terms serve as excluded instruments in the first stage: the WHO-related news is relevant only once 

mandates are in place and is context-specific to Russia. Within the country, no WHO-approved 

alternatives were available, making public discussions about Sputnik V crucial for trust in 

vaccination. This specification is similar to Karaivanov et al. (2022), with the novel news 

instrument as the key modification. 

Behavioral dynamics are described by the growth rate of confirmed cases (a proxy for 

perceived risk associated with going out), the QR-code mandate indicator, and a variable capturing 

behavioral patterns during long holidays. The mandate indicator is the main instrument in the first-

stage equation since it is strongly correlated with behavior. This behavioral specification follows 

Chernozhukov et al. (2021) and Karaivanov et al. (2021), with the addition of the long-holiday 

control capturing the national holiday calendar. In the Russian context, Egorov et al. (2021) show 

that ethnic diversity and social heterogeneity shape social distancing (with similar evidence for the 

United States), while my focus is on epidemiological risk and policy-driven responses. 

To capture behavioral dynamics, I use two measures: the intensity of visits to retail and 

recreation venues (such as restaurants, museums, and shopping malls) and the intensity of public 

transit use. They have been derived from Google’s Community Mobility Reports. According to 

Gordeev (2025a), both measures serve as the most reliable proxies for overall public activity 

among the six Google mobility categories because they have consistent correlations with COVID-

19 cases and vaccination uptake. 
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Many studies in epidemiology start with the Susceptible-Infected-Removed (SIR) model 

by Kermack and McKendrick (1927), which describes epidemic dynamics in a population. 

However, the basic SIR framework omits behavioral responses, which are essential when 

outcomes depend on individual decisions. Gans (2022) and Ellison (2024) extend the model as 

follows: individuals derive utility from activity, but greater activity increases exposure risk for 

susceptible individuals (those who have not yet been infected). These extensions suggest that 

activity decreases as the number of infections rises. In other words, the more people are infected, 

the less active individuals become in order to avoid risky contacts. As mentioned above, I use 

Retail & Recreation and Transit Stations as proxies for activity. 

This paper is organized as follows. Section 2 describes the data, its sources, and cleaning 

procedures. Section 3 presents the baseline model. Section 4 estimates the first-stage regressions 

of the endogenous variables on their instruments. Section 5 develops the identification strategy. 

Section 6 reports results for measures of COVID-19 spread using OLS and TSLS. Section 7 

concludes with a summary of findings. 

2 Data 

This study uses data available at the repository: https://github.com/ivagormih/Covid-in-

Russia/blob/96377b11fb1850c460632be1e486b065317e3aa6/covid19_russia.csv. After cleaning, 

the dataset contains a balanced weekly panel of 12 Russian regions, each observed for 54 weeks 

(648 region-week observations: 𝑁 = 12, 𝑇 = 54). The sample covers the period from January 1, 

2021, through January 14, 2022, before the Omicron variant became dominant in Russia. Because 

Omicron differs substantially from earlier variants, post-Omicron weeks have been excluded from 

the sample to avoid a structural break. 

Table 1. Main Variables 

Notation Definition Source 

𝑌!" 
weekly growth of cumulative cases 
weekly growth of new cases 
weekly growth of cumulative deaths 

Yandex DataLens 

∆𝑣!" weekly new vaccinations (% of population) GOGOV 

𝑅𝑅!" 
𝑇𝑆!" 

intensity of visits to retail and recreation locations 
intensity of public transit use 

Google Mobility 

The main variables used in this study are summarized in Table 1. In particular, if 𝐶!" 

denotes the cumulative number of people in the population of region 𝑖 who have ever tested 

positive up to week 𝑡, then 𝑌!" = log 𝐶!" − log 𝐶!,"$% is the weekly growth rate of cumulative cases. 

https://github.com/ivagormih/Covid-in-Russia/blob/96377b11fb1850c460632be1e486b065317e3aa6/covid19_russia.csv
https://github.com/ivagormih/Covid-in-Russia/blob/96377b11fb1850c460632be1e486b065317e3aa6/covid19_russia.csv
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The weekly growth of cumulative deaths is defined analogously. As for the growth of new cases, 

it is 𝑌!" = log ∆𝐶!" − log ∆𝐶!,"$%, where ∆𝐶!" = 𝐶!" − 𝐶!,"$%. Vaccination is introduced based on 

the information about the first dose of the vaccine, ∆𝑣!" = 𝑣!" − 𝑣!,"$%, where 𝑣!" =
&!"
'!"

 is the 

cumulative percentage of vaccinations. The vaccination series from GOGOV contains missing 

values, so I linearly interpolated the daily figures within each region before aggregating to weekly 

shares, which were then differenced to obtain ∆𝑣!". As for activity variables, they are derived from 

Google Mobility data and reflect movement trends across different categories of places, calculated 

as weekly averages relative to a pre-pandemic baseline. Gordeev (2025a) shows that Retail & 

Recreation and Transit Stations proxy public behavior more reliably than other Google categories.  

The dataset contains information on 15 regions of Russia (see Appendix A), but the 

analysis focuses on 12 because I exclude three regions due to atypical correlation patterns. As 

documented in Gordeev (2025a), Krasnodar Krai has positive correlations between behavioral 

variables and confirmed cases because of tourism-driven mobility. Tatarstan has a markedly 

stronger negative correlation between Transit Stations mobility and cases after introducing region-

wide QR-code requirements for public transit in 2021. Finally, Moscow is a large city with distinct 

policy timing and mobility patterns, so I analyze it separately (Gordeev, 2025b). Accordingly, 

these three regions have been excluded from the estimation sample. 

Apart from the main variables, I introduce instruments for the first stage to address 

endogeneity in vaccination and behavior. First, I use a policy dummy defined as 𝑝!" = 1{𝑡 ≥ 𝜏!}, 

where 𝜏! is the week when QR-code requirements were introduced in region 𝑖. Thus, 𝑝!" captures 

the long-run policy effects. Second, I use 𝑤!" = 1{𝑡 ∈ [𝜏! , 𝜏! + 3]}, which captures only the short-

run shock following the introduction of the policy. The policy adoption dates were collected from 

official regional announcements and media reports and are included in the dataset. 

Regarding the Sputnik V vaccine, it has never been approved by the World Health 

Organization. However, the news coverage of the approval process appears to have influenced 

people’s vaccination decisions. Therefore, I introduce 𝑆", a variable reflecting the tone of 

international news. It was constructed manually by tracking major news reports and assigning 

scores for each day based on the perceived direction and relevance of the information (positive, 

negative, or neutral). The 𝑆" series is not included in the initial dataset but available at: 

https://github.com/ivagormih/Covid-in-Russia/blob/a61145e5a6055ad610e1ec69d26db97a0069a 

048/sputnik.csv. For this research, I use 𝑠" = 𝑆" − 𝑆̅ (where 𝑆̅ denotes the sample mean) in order 

to improve interpretability. By construction, 𝑠" varies over time but not across regions. 

https://github.com/ivagormih/Covid-in-Russia/blob/a61145e5a6055ad610e1ec69d26db97a0069a048/sputnik.csv
https://github.com/ivagormih/Covid-in-Russia/blob/a61145e5a6055ad610e1ec69d26db97a0069a048/sputnik.csv
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3 Baseline Model  

This section formally specifies the baseline model of the study and explains why OLS estimates 

may fail to capture the true effects of vaccine uptake and population mobility. The starting point 

is the following panel equation: 

𝑌!,"() = 𝛽%∆𝑣!,"$* + 𝛽+∆𝑣!,"$, + 𝛽*𝑅𝑅!" + 𝑋!"- 𝛾 + 𝛼! + 𝜀!,"() , (1) 

where the dependent variable 𝑌!" measures COVID-19 incidence dynamics. Specifically, I use the 

weekly growth rate of cases, defined as 𝑌!" = log 𝐶!" − log 𝐶!,"$%, with 𝐶!" denoting the cumulative 

number of confirmed cases in region 𝑖. The three-week and six-week lags of new weekly 

vaccinations are intended to capture the effects of the first and second vaccine doses, respectively. 

The variable 𝑅𝑅!" is a behavioral measure of the intensity of visits to Retail & Recreation places. 

I set 𝑙 = 1 when the outcome is COVID-19 cases, which accounts for the incubation period (see 

Wu et al., 2022, for evidence on incubation periods) and the time needed to obtain PCR test results. 

𝑋!" is a vector of control variables defined in the next section.  

 For robustness, I also consider alternative outcome variables. First, following 

Chernozhukov et al. (2021), I analyze not only growth rates but also the acceleration of cases, 

defined as 𝑌!" = log ∆𝐶!" − log ∆𝐶!,"$%, where ∆𝐶!" = 𝐶!" − 𝐶!,"$%. Second, I use the weekly 

growth rate of deaths, defined analogously as 𝑌!" = log𝐷!" − log𝐷!,"$%. When the outcome is 

deaths, I set 𝑙 = 3, reflecting approximately one week from infection to case detection and two 

weeks from case detection to death (Linton et al., 2020). To account for serial correlation in 

mortality, I also include a one-week lag of the dependent variable as an additional regressor.  

 The major problem arises from the fact that growth in current cases has a positive effect 

on vaccination and a negative effect on Retail & Recreation mobility. In particular, when the public 

observes that the virus becomes more prevalent, they tend to reduce their visits to entertainment 

venues, such as restaurants or theaters. Meanwhile, they get more incentives to get vaccinated for 

additional protection. This creates simultaneity and endogeneity. 

 This paper addresses the problem by treating ∆𝑣!" and 𝑅𝑅!" as endogenous. They are 

instrumented using policy-related shocks and the news about the potential approval of Sputnik V 

vaccine by the World Health Organization. I document strong relevance (partial F-statistics) for 

both vaccination and mobility. In addition, the instruments are plausibly exogenous with respect 

to cases and deaths, affecting them only through the endogenous variables. The next section 

introduces the first stage of the two-stage least squares approach and presents the empirical results. 
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4 First Stage  

In this section, I formally define behavioral activity and vaccination, specifying their dynamic 

evolution and key determinants. Furthermore, these variables are identified as the primary sources 

of endogeneity in the empirical model. Individual activity is measured using two distinct mobility 

indicators: Retail & Recreation, capturing visits to restaurants, shopping malls, and cultural 

venues; Transit Stations, measuring the intensity of public transport use. 𝑅𝑅!" is the main measure 

for region 𝑖	 = 1,… ,𝑁 and week 𝑡	 = 1,… , 𝑇, while 𝑇𝑆!" is included only for comparison. Higher 

values of 𝑅𝑅!" indicate greater out-of-home activity. The first-stage regression for mobility is 

𝑅𝑅!" = 𝛽%𝑝!" + 𝛽+ℎ" + 𝛽*∆ log 𝐶!" + 𝛽.𝑀" + 𝛾𝑡 + 𝛼! + 𝜀!". (2) 

Here, 𝛼! 	are region fixed effects, ∆ log 𝐶!" = log 𝐶!" − log 𝐶!,"$% is the weekly growth rate of 

cumulative cases, 𝑝!" is a policy indicator, ℎ" captures long federal holidays in 2021, 𝑀" is an 

indicator for the mass vaccination campaign in Moscow, and 𝑡 is a linear time trend. 

 As for ℎ", it reflects the holiday schedule. In particular, New Year’s Day is one of the most 

celebrated holidays in Russia and typically leads to increased activity. Thus, ℎ" is positive for two 

weeks before December 31 and negative for two weeks after it (with values of 0.5, 1, -1, and -0.5, 

respectively). Moreover, the index captures holidays in May and non-working days in November: 

the two weeks from April 30 to May 14 take the value -1 due to strong recommendations to stay 

home, and the two weeks from October 29 to November 12 likewise take the value -1. 

 The variable 𝑀" is defined as 𝑀" = 1{𝑡 ∈ [𝜏/ , 𝜏/ + 7]}, where	𝜏/ is the week 

immediately preceding the introduction of QR-code requirements in Moscow. The capital’s policy 

created a short-run nationwide push for vaccination, so I include a control for this eight-week 

window. Although a direct effect on Retail & Recreation mobility is unlikely, I include 𝑀" in 

equation (2) to keep the set of exogenous controls identical across all first-stage regressions, 

consistent with the standard TSLS approach. 

Modeling vaccination dynamics is more complex than modeling behavior, but I follow 

Karaivanov et al. (2022), who explain vaccination using growth of cases as an information variable 

and policy interventions adopted by the government. In addition, I include a Russia-specific 

instrument for vaccination uptake: news coverage of the potential WHO approval of Sputnik V. 

The first-stage regression for vaccine uptake is 

∆𝑣!" = 𝛽%𝑠"𝑝!" + 𝛽+𝑤!" +	𝛽*∆ log 𝐶!" + 𝛽.𝑀" + 𝛽0ℎ" + 𝛾𝑡 + 𝛼! + 𝜀!". (3) 
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The dependent variable ∆𝑣!" denotes new weekly first-dose vaccinations (% of population). The 

WHO-news index 𝑠" has a significant influence on people’s decisions only after the policy 

introduction (see Appendix B), so it enters equation (3) interacted with 𝑝!". The short-run policy 

window 𝑤!" takes the value 1 in the four weeks following 𝜏! (the week when QR-code 

requirements were introduced in region 𝑖). The Moscow-specific dummy 𝑀" captures the 

nationwide push induced by the capital’s policy. Holidays ℎ" are included as a calendar control to 

absorb seasonality (such as clinic schedules).  

 In order to avoid potential omitted variable bias, equation (3) should include not only the 

interaction term 𝑠"𝑝!" but also both main effects. However, adding 𝑝!" and 𝑠" as separate regressors 

in the first-stage vaccination equation would alter the identification strategy. Either they become 

additional excluded instruments for vaccination (which risks violating the exclusion restriction), 

or they must also enter the second stage as controls. In the latter case, 𝑝!" can no longer serve as 

the excluded instrument for Retail & Recreation mobility. Therefore, equation (3) includes only 

the interaction 𝑠"𝑝!". As a robustness check (Appendix C), I include the interaction together with 

both main effects, treating Retail & Recreation mobility as exogenous. The vaccination results are 

qualitatively similar to those presented in Section 6, while the mobility coefficient is 

indistinguishable from zero and should not be interpreted as causal because it is not instrumented. 

 Table 2. First Stage Estimation 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical significance 

at the 10%, 5%, and 1% levels. Standard errors in parentheses are heteroskedasticity-robust (HC1). 

Dependent variable: 𝑅𝑅!" Dependent variable: 100 × ∆𝑣!" 

𝑝!" 
−13.87∗∗∗	
(0.65) 

𝑠" × 𝑝!" 
0.38∗∗∗	
(0.08) 

− − 𝑤!"  
1.07∗∗∗	
(0.15) 

∆ log 𝐶!" 
−264.43∗∗∗	
(18.90) 

∆ log 𝐶!" 
0.32	
(1.88) 

𝑀" 
−0.52	
(0.34) 

𝑀" 
0.79∗∗∗	
(0.06) 

ℎ" 
8.77∗∗∗	
(0.73) 

ℎ" 
0.12	
(0.07) 

𝑡 
0.39∗∗∗	
(0.01) 𝑡 

0.02∗∗∗	
(0.002) 

𝛼! (region FE) Yes 𝛼! (region FE) Yes 

Partial 𝐹 
(homosk.) 519.14 Partial 𝐹 

(homosk.) 98.22 

Observations 𝑁 × 𝑇 = 636 Observations 𝑁 × 𝑇 = 635 
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Table 2 reports the first-stage estimates. It is worth noting that the vaccination variable is 

scaled by 100 to improve readability. In equation (2), the excluded instrument is the policy 

indicator 𝑝!", while in equation (3) the excluded instruments are the WHO-news after the policy 

introduction 𝑠"𝑝!"	and the four-week post-introduction window 𝑤!". All specifications include the 

same set of exogenous controls: ∆ log 𝐶!", the Moscow campaign dummy 𝑀", the holiday index 

ℎ", a linear time trend t, and region fixed effects 𝛼!. The homoskedastic partial F-statistics are 519 

for 𝑅𝑅!" and 98 for ∆𝑣!", above the conventional threshold of 10 (Stock and Yogo, 2005), 

indicating strong instrument relevance. 

The policy indicator is associated with lower Retail & Recreation mobility, consistent with 

restrictions on visits to shopping malls, cafés, and other venues. Vaccinations increase with WHO-

related news, but only once the policy is in place, and they also rise within the short post-policy 

window 𝑤!". Holidays raise mobility, while the Moscow campaign dummy is positively related to 

vaccination – these controls were specifically designed for their corresponding endogenous 

variables. As expected, the coefficient for ∆ log 𝐶!" is strongly negative in the mobility equation 

(activity falls when cases rise) and statistically insignificant in the vaccination equation. 

5 Identification 

In the previous section, I use the policy indicator 𝑝!" = 1{𝑡 ≥ 𝜏!} for QR-code requirements as an 

instrument for Retail & Recreation mobility. As shown in Table 2, it is highly relevant since the 

estimate is negative (about -14 with p < 0.001) and the homoskedastic partial F-statistic for the 

excluded instrument in the 𝑅𝑅!" first-stage regression is 519, which is far above the conventional 

threshold of 10 (Stock and Yogo, 2005). An event study around 𝜏! (Appendix D) detects no pre-

trends, as the pre-policy indicators 𝑝!,"$., 𝑝!,"$*, 𝑝!,"$+ are individually insignificant, as well as 

jointly (p = 0.23), when using region-clustered standard errors. The indicator 𝑝!,"$% is omitted as 

the reference period. Post-policy indicators are significant, with the largest responses for 𝑝!,"(% 

and 𝑝!,"(.. The absence of effects for 𝑝!,"(+ and 𝑝!,"(* (joint p = 0.26) is consistent with stepwise 

local policy implementation (for example, shopping malls first, restaurants later), which can 

plausibly lead to a second decline in activity by week 4.  

Turning to the instruments for vaccination, I use two excluded predictors in the first stage 

for ∆𝑣!": the WHO-related news after the policy introduction, 𝑠"𝑝!", and the short-run post-

introduction window 𝑤!" (which equals 1 in the four weeks following 𝜏!). Both are relevant in the 

first-stage equation for vaccination (Table 2 reports a homoskedastic partial F-statistic of 98 for 

the set of excluded instruments). Placebo checks in Appendices E and F support their exclusion 
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restrictions. The variable 𝑠"𝑝!" captures global information shocks about potential WHO approval 

of Sputnik V that matter only once local mandates are in place. Such news plausibly shifts 

perceived vaccine quality and acceptance but has no direct biological effect on infection dynamics. 

Similarly, the four-week window 𝑤!" (which equals 1 for weeks 𝑡 ∈ [𝜏! , 𝜏! + 3]) reflects short-run 

implementation intensity that increases vaccine uptake but has no direct effect on infections if 

behavior and cases are controlled for. 

First, the future values of the WHO-news instrument 𝑠"(2𝑝!,"(2 for 𝑘 ∈ {1, 2, 3} do not 

predict current vaccinations (see Appendix E). The estimates are tiny and jointly insignificant 

(Wald test yields joint p = 0.39). Second, for the short-run window 𝑤!", an event study with one-

week pre-policy dummies 𝑓!,"$2 = 1{𝑡 = 𝜏! − 𝑘} for 𝑘 ∈ {1, 2, 3} detects no pre-trend (see 

Appendix F). All coefficients are small and jointly insignificant (Wald test yields joint p = 0.20), 

while 𝑤!" itself remains positive and significant. 

A key identification concern is reverse causality: surges in new cases could both stimulate 

policy and directly lower mobility. I mitigate this by controlling for ∆ log 𝐶!", region fixed effects 

𝛼!, and a common trend 𝑡. Therefore, these tests suggest that vaccination is not predicted by past 

values of policy, and there are no reverse-timing effects (future news does not influence the current 

uptake), which supports the exclusion restrictions for 𝑠"𝑝!" and 𝑤!". All specifications use the same 

set of exogenous controls: ∆ log 𝐶!", the Moscow campaign dummy 𝑀", the holiday index ℎ", a 

linear trend 𝑡, and region fixed effects 𝛼!. Combined with the strong instruments, this evidence 

forms the basis of the identification strategy. 

6 Main Model 

In this section, I estimate the second-stage regression and discuss the results in detail. First, I apply 

OLS as a baseline model. Then, I implement two-stage least squares (TSLS), using the excluded 

instruments described in the previous section to address endogeneity. 
Virus transmission is modeled as a function of behavioral activity, new weekly 

vaccinations, and a set of control variables: 

∆ log 𝐶!,"(% = 𝛽%∆𝑣!,"$* + 𝛽+∆𝑣!,"$, + 𝛽*𝑅𝑅!" + 𝑋!"- 𝛾 + 𝛼! + 𝜀!,"(%, (4) 

where 𝛽%, 𝛽+, 𝛽*	are the coefficients to be estimated. The three-week and six-week lags of vaccine 

uptake are intended to capture the effect of the first and second doses, respectively. The one-week 

lag of cases aggregates the incubation period (see Wu et al. (2022) for evidence on incubation 

periods) and the time to receive PCR test results. The controls set 𝑋!" contains 𝑀" and ℎ" (special 
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week indicators), a common time trend 𝑡, and 𝑌!" = ∆ log 𝐶!". I report OLS estimates for equation 

(4) and then compare them with TSLS.  

Table 3. Estimation of Cases 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical significance 

at the 10%, 5%, and 1% levels. Standard errors in parentheses are heteroskedasticity-robust (HC1). 

Estimation results for future case growth are reported in Table 3. The dependent variable 

is ∆ log 𝐶!,"(% scaled by 100. Columns 1 and 2 estimate the model using OLS for Retail & 

Recreation and Transit Stations as the activity measure. Column 3 reports the TSLS specification 

in which 𝑅𝑅!", ∆𝑣!,"$*, and ∆𝑣!,"$, are treated as endogenous. All specifications include region 

fixed effects, the current case growth ∆ log 𝐶!", special-week dummies (𝑀" and ℎ"), and a linear 

time trend 𝑡. Standard errors are heteroskedasticity-robust (HC1). 

Across the two OLS columns, both vaccination lags are negative and highly significant: 

the three-week lag ranges from -11.6 to -9.9 and the six-week lag lies between -12.9 to -11.1. In 

the TSLS column, the six-week effect becomes substantially larger (approximately -32.5), while 

 
Dependent variable: 100 × ∆ log 𝐶!,"(% 
OLS TSLS 

∆𝑣!,"$* −9.93∗∗∗	
(3.14) 

−11.62∗∗∗	
(2.94) 

−14.09∗∗∗	
(3.46) 

∆𝑣!,"$, −12.92∗∗∗	
(2.13) 

−11.14∗∗∗	
(1.97) 

−32.47∗∗∗	
(3.38) 

𝑅𝑅!" 
0.02∗∗∗	
(0.002) − 

0.04∗∗∗	
(0.004) 

𝑇𝑆!" − 
0.01∗∗∗	
(0.001) 

− 

∆ log 𝐶!" 
96.97∗∗∗	
(2.78) 

96.09∗∗∗	
(2.68) 

104.34∗∗∗	
(2.50) 

𝑀" 
0.25∗∗∗	
(0.04) 

0.24∗∗∗	
(0.04) 

0.16∗∗∗	
(0.04) 

ℎ" 
−0.23∗∗∗	
(0.04) 

−0.22∗∗∗	
(0.04) 

−0.40∗∗∗	
(0.04) 

𝑡 
0.007∗∗∗	
(0.002)	

0.008∗∗∗	
(0.001)	

0.01∗∗∗	
(0.002)	

𝛼! (region FE) Yes Yes Yes 

Partial 
𝐹	(homosk.) − − 

𝑅𝑅!": 519.14 
∆𝑣!": 98.22 

Observations 𝑁 × 𝑇 = 563 𝑁 × 𝑇 = 563 𝑁 × 𝑇 = 550 
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the effect of the three-week increases slightly to -14.1. This pattern is consistent with protection 

building over time, as instrumental variables correct attenuation and simultaneity bias. Activity is 

positively associated with next-week cases: this effect rises from nearly 0.01-0.02 in OLS to 

approximately 0.04 in TSLS, again consistent with OLS attenuation (for example, measurement 

error or negative simultaneity). The epidemic exhibits strong persistence: the coefficient on 

∆ log 𝐶!" is near 1 in OLS (0.96-0.97 when rescaled back) and slightly above in TSLS (about 1.04). 

The linear time trend is significant and does not change dramatically across specifications. These 

TSLS patterns are consistent with concerns about downward bias in naïve OLS estimates: using 

instruments tends to strengthen estimated vaccination effects when endogeneity and measurement 

error are mitigated (Hansen and Mano, 2023). 

The strength of all instruments is high. The homoskedastic partial F-statistics from the first 

stage are 519 for 𝑅𝑅!" and 98 for ∆𝑣!", which is well above conventional thresholds (Stock and 

Yogo, 2005). Overall, the TSLS results reinforce a meaningful protective effect of vaccination 

(particularly at six weeks) and a positive causal impact of mobility on subsequent cases. 

Following Chernozhukov et al. (2021), I use the acceleration of cases by re-estimating 

equation (1) with 𝑌!" defined as ∆ log ∆𝐶!" = log ∆𝐶!" − log ∆𝐶!,"$%. Appendix G shows that the 

findings for 𝑅𝑅!" are similar to the main specification: the estimate increases from 0.67-0.81 under 

OLS to 1.71 under TSLS. For vaccination, the pattern differs: while the six-week lag rises roughly 

threefold, from -513 to -1592, the three-week lag weakens from -340 to -229.  

Similarly, I model the equation for future deaths as a function of behavioral activity, new 

weekly vaccinations, and the same set of controls: 

∆ log𝐷!,"(* = 𝛽%∆𝑣!,"$* + 𝛽+∆𝑣!,"$, + 𝛽*𝑅𝑅!" + 𝛿∆ log𝐷!,"(+ + 𝑋!"- 𝛾 + 𝛼! + 𝜀!,"(*. (5) 

I forecast growth of deaths three weeks ahead to align with epidemiological timing: deaths 

typically occur about two weeks after case detection, with case detection itself occurring roughly 

one week after infection (Linton et al., 2020). I include a one-week lag of the dependent variable 

as an additional regressor (∆ log𝐷!,"(+) to account for serial correlation. Table 4 reports estimates 

for equation (5), where the outcome is scaled by 100 to improve readability. Columns 1 and 2 

present OLS results with Retail & Recreation and Transit Stations as alternative activity measures, 

while column 3 reports the TSLS specification in which 𝑅𝑅!", ∆𝑣!,"$*, and ∆𝑣!,"$, are treated as 

endogenous and instrumented as described above. 
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Table 4. Estimation of Deaths 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical significance 

at the 10%, 5%, and 1% levels. Standard errors in parentheses are heteroskedasticity-robust (HC1). 

Mortality is highly persistent: the coefficient for ∆ log𝐷!,"(+ is approximately 84-87 with 

p < 0.001 across columns (or 0.84-0.87 without scaling). The six-week lag (a proxy for the effect 

of full immunization) is negative and significant in all columns (around -11 in OLS and -25 in 

TSLS), while the three-week lag is small and statistically indistinguishable from zero. This pattern 

is consistent with clinical evidence that protection against severe outcomes strengthens after 

completion of full immunization (Andrews et al., 2022; Rahmani et al., 2022). 

Activity follows the same pattern as in the results for cases. In particular, Retail & 

Recreation mobility is associated with an increase in future deaths: the estimate is 0.02 in OLS 

and 0.04 in TSLS. The larger TSLS coefficients relative to OLS are consistent with attenuation 

and simultaneity bias in the naïve regressions. The Transit Stations index is also positive and 

 
Dependent variable: 100 × ∆ log𝐷!,"(* 

OLS TSLS 

∆𝑣!,"$* −0.18	
(3.88) 

−1.22	
(3.71) 

4.89	
(7.64) 

∆𝑣!,"$, −11.24∗∗∗	
(3.98) 

−9.84∗∗∗	
(3.82) 

−25.26∗∗∗	
(7.84) 

𝑅𝑅!" 
0.02∗∗∗	
(0.01) − 

0.04∗∗∗	
(0.01) 

𝑇𝑆!" − 
0.01∗∗	
(0.005) 

− 

∆ log𝐷!,"(+ 86.38∗∗∗	
(4.21) 

86.84∗∗∗	
(4.22) 

84.35∗∗∗	
(4.26) 

∆ log 𝐶!" 
8.09∗	
(4.28) 

6.87∗	
(4.09) 

16.56∗∗	
(4.31) 

𝑀" 
0.13∗	
(0.08) 

0.12∗	
(0.08) 

0.03	
(0.08) 

ℎ" 
−0.06	
(0.08) 

−0.02	
(0.08) 

−0.31∗∗∗	
(0.10) 

𝑡 
−0.002	
(0.003)	

−0.002	
(0.003)	

−0.004	
(0.004)	

𝛼! (region FE) Yes Yes Yes 

Partial 
𝐹	(homosk.) − − 

𝑅𝑅!": 519.14 
∆𝑣!": 98.22 

Observations 𝑁 × 𝑇 = 527 𝑁 × 𝑇 = 527 𝑁 × 𝑇 = 527 
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statistically significant in OLS (about 0.01). The growth rate of cases becomes more significant 

once endogeneity in behavior and vaccination is addressed. The linear time trend is insignificant 

across specifications, indicating that key time-varying factors are already captured. Taken together, 

the TSLS results suggest a meaningful protective effect of vaccination on mortality concentrated 

at the six-week horizon and a positive causal effect from mobility to subsequent deaths. 

7 Conclusion 

The analysis reveals that population mobility and vaccine uptake are the key drivers of short-run 

COVID-19 dynamics and that reliable instruments are crucial for isolating their causal effects. The 

identification strategy uses three sources of exogenous variation: the timing of regional QR-code 

requirements 𝑝!" as an instrument for Retail & Recreation mobility, WHO-related news after the 

introduction of the mandates 𝑠"𝑝!" and a four-week post-policy window 𝑤!" as instruments for 

weekly vaccination. First-stage diagnostics indicate strong relevance (homoskedastic partial F-

statistic is nearly 519 for mobility and about 98 for vaccination). Moreover, event-study and 

placebo tests find no anticipatory patterns: pre-policy indicators for the mandate are jointly 

insignificant, future WHO-news terms do not predict current vaccination, and pre-policy one-week 

dummies for 𝑤!" are jointly indistinguishable from zero. Together with economic arguments for 

exclusion (policy timing based on epidemiological guidance and WHO coverage shifting 

perceptions rather than biology), these results support the validity of the instruments. 

As for cases, the TSLS estimates show a clear protective role of vaccination and a positive 

causal impact of mobility on subsequent infections. The six-week vaccination lag (interpreted as 

the effect of full immunization) reduces next-week case growth (about -32, compared with -13 

under OLS), while the three-week lag is smaller but highly significant (about -14, compared with 

-10 under OLS). The activity effect rises when moving from OLS to TSLS (from roughly 0.01-

0.02 to approximately 0.04), consistent with attenuation and simultaneity in naïve regressions. The 

dynamics of cases are highly persistent (the coefficient on ∆ log 𝐶!" is almost 1 in OLS and slightly 

above in TSLS). 

As for deaths, mortality is strongly persistent (the one-period lag relative to the 𝑡 + 3 

period is between 0.84 and 0.87). The vaccination pattern differs from the results for cases: the 

six-week lag is negative and highly significant in TSLS (about -25, compared with -11 in OLS), 

while the three-week lag remains small and statistically insignificant. Retail & Recreation mobility 

is positively associated with future death growth and the estimate increases in TSLS relative to 

OLS (from nearly 0.02 to about 0.04). The current growth rate of cases becomes a significant 

predictor of deaths at 𝑡 + 3 once behavior and vaccination are instrumented. 
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The evidence implies that accelerating vaccination, especially completing the full 

vaccination schedule, produces substantial reductions in both infections and mortality in the short 

run, and that limiting high-contact entertainment activity mitigates transmission and deaths. These 

findings are robust across alternative activity proxies (Retail & Recreation, Transit Stations) and 

different outcome variables, and they satisfy placebo and event-study checks. Although no 

exclusion restriction can be formally proven, the combination of strong first stages, absence of 

pre-trends, and economic arguments make a compelling case that the estimated effects are causal. 
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Appendices 

Appendix A. Federal Subjects of Russia 
Code Name Capital 

2 Bashkortostan Ufa 

16 Tatarstan Kazan 

23 Krasnodar Krai Krasnodar 

24 Krasnoyarsk Krai Krasnoyarsk 

36 Voronezh Oblast Voronezh 

52 Nizhny Novgorod Oblast Nizhny Novgorod 

54 Novosibirsk Oblast Novosibirsk 

55 Omsk Oblast Omsk 

59 Perm Krai Perm 

61 Rostov Oblast Rostov-on-Don 

63 Samara Oblast Samara 

66 Sverdlovsk Oblast Yekaterinburg 

74 Chelyabinsk Oblast Chelyabinsk 

77 Moscow 

78 Saint Petersburg 

The table lists codes for the Russian Federation's federal subjects and their administrative centers. 

Moscow and Saint Petersburg are federal cities, meaning that they function as separate regions. 
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Appendix B. WHO News Before Mandates 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are 

heteroskedasticity-robust (HC1). The variable 𝑠" × (1 − 𝑝!") captures the influence of WHO-

related news on vaccination decisions before the introduction of mandates, and it is statistically 

indistinguishable from zero. 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variable: 100 × ∆𝑣!" 

𝑠" × 𝑝!" 
0.38∗∗∗	
(0.08) 

𝑤!"  
1.07∗∗∗	
(0.15) 

∆ log 𝐶!" 
0.46	
(1.90) 

𝑠" × (1 − 𝑝!") 
−0.01	
(0.02) 

𝑀" 
0.79∗∗∗	
(0.06) 

Pre-mandate WHO news = 0 (Wald): 
𝐹(1,616) = 0.28, 𝑝 = 0.60 

ℎ" 
0.12	
(0.07) 

 
𝑡 

0.02∗∗∗	
(0.002) 

𝛼! (region FE) Yes Observations 𝑁 × 𝑇 = 635 



 19 

Appendix C. TSLS with Exogenous RR 

First Stage 
Dependent variable: 100 × ∆𝑣!" 

Second Stage 
Dependent variable: 100 × ∆ log 𝐶!,"(% 

 OLS TSLS 

𝑠" × 𝑝!" 
0.35∗∗∗	
(0.09) 

∆𝑣!,"$* −4.81∗	
(2.69) 

−12.94∗∗∗	
(3.57) 

𝑤!"  
1.13∗∗∗	
(0.16) 

∆𝑣!,"$, −14.52∗∗∗	
(2.05) 

−35.14∗∗∗	
(3.45) 

𝑠" 
−0.01	
(0.02) 

𝑠" 
−0.04∗∗∗	
(0.01) 

−0.05∗∗∗	
(0.01) 

𝑝!" 
−0.09	
(0.13) 

𝑝!" 
−0.52∗∗∗	
(0.08) 

−0.55∗∗∗	
(0.08) 

∆ log 𝐶!" 
0.51	
(1.92) ∆ log 𝐶!" 

92.62∗∗∗	
(2.93) 

94.29∗∗∗	
(3.10) 

𝑀" 
0.77∗∗∗	
(0.07) 𝑀" 

0.13∗∗∗	
(0.04) 

0.12∗∗∗	
(0.04) 

ℎ" 
0.12∗	
(0.07) ℎ" 

−0.08∗	
(0.04) 

−0.05	
(0.04) 

𝑡 0.02∗∗∗	
(0.003) 

𝑡 0.02∗∗∗	
(0.002)	

0.03∗∗∗	
(0.003)	

𝛼! (region FE) Yes 𝛼! (region FE) Yes Yes 
Partial 𝐹 

(homosk.) 94.81 𝑅𝑅!" 
−0.001	
(0.004) 

0.000	
(0.003) 

Observations 𝑁 × 𝑇 = 635 Observations 𝑁 × 𝑇 = 563 𝑁 × 𝑇 = 550 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are 

heteroskedasticity-robust (HC1). The homoskedastic first-stage partial F-statistic for the excluded 

instruments 𝑠" × 𝑝!" and 𝑤!" is 94.81 (exceeds the conventional threshold of 10), indicating strong 

relevance. The Wald test of the joint null (𝑠" = 0, 𝑝!" = 0) in the first stage yields F=0.40, p=0.67. 

In this robustness, only vaccination is instrumented, while 𝑅𝑅!" is treated as exogenous, which 

leads to tiny coefficients. 
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Appendix D. Event Study for Policy  

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are 

cluster-robust (by region). The indicator 𝑝!,"$% is omitted as the reference period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variable: 𝑅𝑅!" 

𝑝!" 
−5.67∗∗∗	
(2.05) 

𝑝!,"$. −0.76	
(1.61) 

∆ log 𝐶!" 
−298.19∗∗∗	
(44.67) 

𝑝!,"$* −0.80	
(1.37) 

𝑀" 
−1.30∗	
(0.71) 

𝑝!,"$+ −0.91	
(1.61) 

ℎ" 
5.21∗∗∗	
(0.90) 

𝑝!,"(% −3.89∗∗	
(1.52) 

𝑡 
0.47∗∗∗	
(0.02) 

𝑝!,"(+ 0.79	
(1.85) 

𝛼! (region FE) Yes 𝑝!,"(* 0.08	
(1.61) 

Pre-policy (-2, -3, -4) jointly zero: 
𝐹(3,11) = 1.70, 𝑝 = 0.23 𝑝!,"(. −4.75∗∗∗	

(1.35) 
Post-policy (+1, +2, +3, +4) jointly zero: 

𝐹(4,11) = 23.71, 𝑝 < 0.01   

Mid-window (+2, +3) jointly zero: 
𝐹(2,11) = 1.53, 𝑝 = 0.26 Observations 𝑁 × 𝑇 = 552 
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Appendix E. Placebo test for the WHO news instrument 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are 

heteroskedasticity-robust (HC1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variable: 100 × ∆𝑣!" 

𝑤!"  
0.99∗∗∗	
(0.16) 

𝑠"(% × 𝑝!,"(% 0.0002	
(0.09) 

∆ log 𝐶!" 
−1.34	
(1.70) 

𝑠"(+ × 𝑝!,"(+ 0.03	
(0.10) 

𝑀" 
0.76∗∗∗	
(0.07) 

𝑠"(* × 𝑝!,"(* 0.14	
(0.09) 

ℎ" 
−0.03	
(0.09) 

Post-policy (+1, +2, +3) jointly zero (Wald): 
𝐹(3,579) = 1.00, 𝑝 = 0.39 

𝑡 
0.02∗∗∗	
(0.002)  

𝛼! (region FE) Yes Observations 𝑁 × 𝑇 = 599 
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Appendix F. No pre-trend in short-run policy window 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are 

cluster-robust (by region). 𝑓!,"$2 are one-week dummies, specifically 𝑓!,"$2 = 1{𝑡 = 𝜏! − 𝑘}, 

where 𝜏! denotes the week when policies in region 𝑖 were introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variable: 100 × ∆𝑣!" 

𝑠" × 𝑝!" 
0.35∗∗∗	
(0.06) 

𝑤!"  
1.20∗∗∗	
(0.30) 

∆ log 𝐶!" 
3.40	
(2.68) 

𝑓!,"$% 0.01	
(0.49) 

𝑀" 
0.76∗∗∗	
(0.13) 

𝑓!,"$+ 0.06	
(0.26) 

ℎ" 
0.10	
(0.08) 

𝑓!,"$* 0.48∗	
(0.26) 

𝑡 
0.02∗∗∗	
(0.002) 

Pre-policy (-1, -2, -3) jointly zero (Wald): 
𝐹(3,11) = 1.83, 𝑝 = 0.20 

𝛼! (region FE) Yes Observations 𝑁 × 𝑇 = 611 
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Appendix G. Estimation of Cases (Acceleration) 

𝑁 denotes the number of regions, 𝑇 denotes the number of weeks. Asterisks indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are 

heteroskedasticity-robust (HC1). 
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Dependent variable: 100 × ∆ log ∆𝐶!,"(% 

OLS TSLS 

∆𝑣!,"$* −340.09∗∗∗	
(128.46) 

−420.66∗∗∗	
(117.25) 

−229.47∗	
(135.72) 

∆𝑣!,"$, −513.87∗∗∗	
(106.49) 

−429.24∗∗∗	
(99.32) 

−1591.66∗∗∗	
(181.86) 

𝑅𝑅!" 
0.81∗∗∗	
(0.10) 

− 
1.71∗∗∗	
(0.15) 

𝑇𝑆!" − 0.67∗∗∗	
(0.08) 

− 

∆ log 𝐶!" 
−112.51	
(92.71) 

77.47	
(88.74) 

354.91∗∗∗	
(91.85) 

𝑀" 
9.02∗∗∗	
(1.45) 

8.47∗∗∗	
(1.39) 

4.77∗∗∗	
(1.48) 

ℎ" 
−12.77∗∗∗	
(2.45) 

−12.68∗∗∗	
(2.30) 

−18.86∗∗∗	
(2.32) 

𝑡 0.19∗∗	
(0.08)	

0.22∗∗∗	
(0.07)	

0.37∗∗∗	
(0.08)	

𝛼! (region FE) Yes Yes Yes 

Partial 
𝐹	(homosk.) − − 

𝑅𝑅!": 519.14 
∆𝑣!": 98.22 

Observations 𝑁 × 𝑇 = 563 𝑁 × 𝑇 = 563 𝑁 × 𝑇 = 550 


