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1 Introduction

Epidemiological research has received renewed attention in recent years as a result of the COVID-
19 pandemic. In 2025, it remains a major public health concern. The demographic literature
documents an unusually high and regionally heterogeneous COVID-19 mortality burden in Russia
(Timonin et al., 2021; Shkolnikov et al., 2022). Given this context, this paper analyzes the effects
of vaccination and population mobility on transmission and mortality across Russia’s largest
regions using an instrumental variables approach within a panel data framework. In particular, I
model epidemic dynamics as a function of vaccination uptake and public behavior, treating both

variables as endogenous.

Vaccination dynamics are explained by the growth rate of confirmed cases (an information
variable capturing perceived risk), a short-run post-policy window following the introduction of
regional QR-code requirements, and news coverage of the potential approval of the Sputnik V
vaccine by the World Health Organization interacted with the mandate indicator. The latter two
terms serve as excluded instruments in the first stage: the WHO-related news is relevant only once
mandates are in place and is context-specific to Russia. Within the country, no WHO-approved
alternatives were available, making public discussions about Sputnik V crucial for trust in
vaccination. This specification is similar to Karaivanov et al. (2022), with the novel news

instrument as the key modification.

Behavioral dynamics are described by the growth rate of confirmed cases (a proxy for
perceived risk associated with going out), the QR-code mandate indicator, and a variable capturing
behavioral patterns during long holidays. The mandate indicator is the main instrument in the first-
stage equation since it is strongly correlated with behavior. This behavioral specification follows
Chernozhukov et al. (2021) and Karaivanov et al. (2021), with the addition of the long-holiday
control capturing the national holiday calendar. In the Russian context, Egorov et al. (2021) show
that ethnic diversity and social heterogeneity shape social distancing (with similar evidence for the

United States), while my focus is on epidemiological risk and policy-driven responses.

To capture behavioral dynamics, I use two measures: the intensity of visits to retail and
recreation venues (such as restaurants, museums, and shopping malls) and the intensity of public
transit use. They have been derived from Google’s Community Mobility Reports. According to
Gordeev (2025a), both measures serve as the most reliable proxies for overall public activity
among the six Google mobility categories because they have consistent correlations with COVID-

19 cases and vaccination uptake.



Many studies in epidemiology start with the Susceptible-Infected-Removed (SIR) model
by Kermack and McKendrick (1927), which describes epidemic dynamics in a population.
However, the basic SIR framework omits behavioral responses, which are essential when
outcomes depend on individual decisions. Gans (2022) and Ellison (2024) extend the model as
follows: individuals derive utility from activity, but greater activity increases exposure risk for
susceptible individuals (those who have not yet been infected). These extensions suggest that
activity decreases as the number of infections rises. In other words, the more people are infected,
the less active individuals become in order to avoid risky contacts. As mentioned above, I use

Retail & Recreation and Transit Stations as proxies for activity.

This paper is organized as follows. Section 2 describes the data, its sources, and cleaning
procedures. Section 3 presents the baseline model. Section 4 estimates the first-stage regressions
of the endogenous variables on their instruments. Section 5 develops the identification strategy.
Section 6 reports results for measures of COVID-19 spread using OLS and TSLS. Section 7

concludes with a summary of findings.

2 Data

This study uses data available at the repository: https:/github.com/ivagormih/Covid-in-
Russia/blob/96377b11fb1850c460632bel1e486b065317e3aab/covidl9_russia.csv. After cleaning,

the dataset contains a balanced weekly panel of 12 Russian regions, each observed for 54 weeks
(648 region-week observations: N = 12, T = 54). The sample covers the period from January 1,
2021, through January 14, 2022, before the Omicron variant became dominant in Russia. Because
Omicron differs substantially from earlier variants, post-Omicron weeks have been excluded from
the sample to avoid a structural break.

Table 1. Main Variables

Notation Definition Source

weekly growth of cumulative cases
Yie weekly growth of new cases Yandex DatalLens

weekly growth of cumulative deaths

Av;, weekly new vaccinations (% of population) GOGOV
RR;; intensity of visits to retail and recreation locations .

i ) . ) Google Mobility
TS intensity of public transit use

The main variables used in this study are summarized in Table 1. In particular, if C;;
denotes the cumulative number of people in the population of region i who have ever tested

positive up to week ¢, then Y;; = log C;; — log C; ,_ is the weekly growth rate of cumulative cases.
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The weekly growth of cumulative deaths is defined analogously. As for the growth of new cases,

it is ¥;; = log AC;y —log AC; ,—1, where AC; = C;y — C;,—1. Vaccination is introduced based on
the information about the first dose of the vaccine, Av;, = v; — v; ¢4, Where v; = % is the
it

cumulative percentage of vaccinations. The vaccination series from GOGOV contains missing
values, so I linearly interpolated the daily figures within each region before aggregating to weekly
shares, which were then differenced to obtain Av;,. As for activity variables, they are derived from
Google Mobility data and reflect movement trends across different categories of places, calculated
as weekly averages relative to a pre-pandemic baseline. Gordeev (2025a) shows that Retail &

Recreation and Transit Stations proxy public behavior more reliably than other Google categories.

The dataset contains information on 15 regions of Russia (see Appendix A), but the
analysis focuses on 12 because I exclude three regions due to atypical correlation patterns. As
documented in Gordeev (2025a), Krasnodar Krai has positive correlations between behavioral
variables and confirmed cases because of tourism-driven mobility. Tatarstan has a markedly
stronger negative correlation between Transit Stations mobility and cases after introducing region-
wide QR-code requirements for public transit in 2021. Finally, Moscow is a large city with distinct
policy timing and mobility patterns, so I analyze it separately (Gordeev, 2025b). Accordingly,

these three regions have been excluded from the estimation sample.

Apart from the main variables, I introduce instruments for the first stage to address
endogeneity in vaccination and behavior. First, I use a policy dummy defined as p;; = 1{t = 1},
where 7; is the week when QR-code requirements were introduced in region i. Thus, p;; captures
the long-run policy effects. Second, I use w;; = 1{t € [t;, ; + 3]}, which captures only the short-
run shock following the introduction of the policy. The policy adoption dates were collected from

official regional announcements and media reports and are included in the dataset.

Regarding the Sputnik V vaccine, it has never been approved by the World Health
Organization. However, the news coverage of the approval process appears to have influenced
people’s vaccination decisions. Therefore, I introduce S;, a variable reflecting the tone of
international news. It was constructed manually by tracking major news reports and assigning
scores for each day based on the perceived direction and relevance of the information (positive,
negative, or neutral). The S; series is not included in the initial dataset but available at:

https://github.com/ivagormih/Covid-in-Russia/blob/a61145e5a6055ad610e1ec69d26db97a0069a

048/sputnik.csv. For this research, I use s, = S, — S (where S denotes the sample mean) in order

to improve interpretability. By construction, s, varies over time but not across regions.
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3 Baseline Model

This section formally specifies the baseline model of the study and explains why OLS estimates
may fail to capture the true effects of vaccine uptake and population mobility. The starting point

is the following panel equation:

Yit1 = B1BVi¢—3 + B2AV; ¢ + B3RR;: + Xy +a; + Eit+lr (1)

where the dependent variable Y;; measures COVID-19 incidence dynamics. Specifically, I use the
weekly growth rate of cases, defined as ¥;; = log C;; — log C; ,_1, with C;; denoting the cumulative
number of confirmed cases in region i. The three-week and six-week lags of new weekly
vaccinations are intended to capture the effects of the first and second vaccine doses, respectively.
The variable RR;; is a behavioral measure of the intensity of visits to Retail & Recreation places.
I set I = 1 when the outcome is COVID-19 cases, which accounts for the incubation period (see
Wuet al., 2022, for evidence on incubation periods) and the time needed to obtain PCR test results.

X;¢ 1s a vector of control variables defined in the next section.

For robustness, I also consider alternative outcome variables. First, following
Chernozhukov et al. (2021), I analyze not only growth rates but also the acceleration of cases,
defined as Y;; = logAC;, —logAC; ¢, where AC;; = Cj — C;r—4. Second, I use the weekly
growth rate of deaths, defined analogously as Y;; = logD;; —log D;,_,. When the outcome is
deaths, I set [ = 3, reflecting approximately one week from infection to case detection and two
weeks from case detection to death (Linton et al., 2020). To account for serial correlation in

mortality, I also include a one-week lag of the dependent variable as an additional regressor.

The major problem arises from the fact that growth in current cases has a positive effect
on vaccination and a negative effect on Retail & Recreation mobility. In particular, when the public
observes that the virus becomes more prevalent, they tend to reduce their visits to entertainment
venues, such as restaurants or theaters. Meanwhile, they get more incentives to get vaccinated for

additional protection. This creates simultaneity and endogeneity.

This paper addresses the problem by treating Av;, and RR;; as endogenous. They are
instrumented using policy-related shocks and the news about the potential approval of Sputnik V
vaccine by the World Health Organization. I document strong relevance (partial F-statistics) for
both vaccination and mobility. In addition, the instruments are plausibly exogenous with respect
to cases and deaths, affecting them only through the endogenous variables. The next section

introduces the first stage of the two-stage least squares approach and presents the empirical results.



4 First Stage

In this section, I formally define behavioral activity and vaccination, specifying their dynamic
evolution and key determinants. Furthermore, these variables are identified as the primary sources
of endogeneity in the empirical model. Individual activity is measured using two distinct mobility
indicators: Retail & Recreation, capturing visits to restaurants, shopping malls, and cultural
venues; Transit Stations, measuring the intensity of public transport use. RR;; is the main measure
forregioni =1,..,Nandweekt = 1,...,T, while TS;; is included only for comparison. Higher

values of RR;; indicate greater out-of-home activity. The first-stage regression for mobility is

RR;; = B1pit + P2he + B3Alog Cip + oM, + vt + a; + &t (2)

Here, a; are region fixed effects, Alog C;; = logC;y —log C;,_, is the weekly growth rate of
cumulative cases, p;; is a policy indicator, h; captures long federal holidays in 2021, M; is an

indicator for the mass vaccination campaign in Moscow, and ¢ is a linear time trend.

As for hy, it reflects the holiday schedule. In particular, New Year’s Day is one of the most
celebrated holidays in Russia and typically leads to increased activity. Thus, h; is positive for two
weeks before December 31 and negative for two weeks after it (with values of 0.5, 1, -1, and -0.5,
respectively). Moreover, the index captures holidays in May and non-working days in November:
the two weeks from April 30 to May 14 take the value -1 due to strong recommendations to stay

home, and the two weeks from October 29 to November 12 likewise take the value -1.

The variable M, is defined as M, = 1{t € [ty, Ty + 7]}, where T, is the week
immediately preceding the introduction of QR-code requirements in Moscow. The capital’s policy
created a short-run nationwide push for vaccination, so I include a control for this eight-week
window. Although a direct effect on Retail & Recreation mobility is unlikely, I include M, in
equation (2) to keep the set of exogenous controls identical across all first-stage regressions,

consistent with the standard TSLS approach.

Modeling vaccination dynamics is more complex than modeling behavior, but I follow
Karaivanov et al. (2022), who explain vaccination using growth of cases as an information variable
and policy interventions adopted by the government. In addition, I include a Russia-specific
instrument for vaccination uptake: news coverage of the potential WHO approval of Sputnik V.

The first-stage regression for vaccine uptake is

Avie = B15Die + Pawir + P3Alog Cip + BaMy + Bshe + vt + a; + & (3)



The dependent variable Av;; denotes new weekly first-dose vaccinations (% of population). The
WHO-news index s, has a significant influence on people’s decisions only after the policy
introduction (see Appendix B), so it enters equation (3) interacted with p;;. The short-run policy
window w;, takes the value 1 in the four weeks following t; (the week when QR-code
requirements were introduced in region i). The Moscow-specific dummy M, captures the
nationwide push induced by the capital’s policy. Holidays h; are included as a calendar control to
absorb seasonality (such as clinic schedules).

In order to avoid potential omitted variable bias, equation (3) should include not only the
interaction term s, p;; but also both main effects. However, adding p;; and s; as separate regressors
in the first-stage vaccination equation would alter the identification strategy. Either they become
additional excluded instruments for vaccination (which risks violating the exclusion restriction),
or they must also enter the second stage as controls. In the latter case, p;; can no longer serve as
the excluded instrument for Retail & Recreation mobility. Therefore, equation (3) includes only
the interaction s;p;;. As a robustness check (Appendix C), I include the interaction together with
both main effects, treating Retail & Recreation mobility as exogenous. The vaccination results are
qualitatively similar to those presented in Section 6, while the mobility coefficient is
indistinguishable from zero and should not be interpreted as causal because it is not instrumented.

Table 2. First Stage Estimation

Dependent variable: RR;; Dependent variable: 100 X Av;,
—13.87"* o x 0.38™*
Pit (0.65) e % Pit (0.08)
1.07***
t (0.15)
—264.43** 0.32
AlogC; AlogC;
08 bt (18.90) 08 Sir (1.88)
M —0.52 M 0.79"*
' (0.34) ‘ (0.06)
8.77* 0.12
h; he
(0.73) (0.07)
, 0.39"* , 0.02™*
(0.01) (0.002)
a; (region FE) Yes a; (region FE) Yes
Partial F Partial F
519.14 98.22
(homosk.) (homosk.)
Observations N XT =636 Observations N XT = 635

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical significance

at the 10%, 5%, and 1% levels. Standard errors in parentheses are heteroskedasticity-robust (HC1).




Table 2 reports the first-stage estimates. It is worth noting that the vaccination variable is
scaled by 100 to improve readability. In equation (2), the excluded instrument is the policy
indicator p;;, while in equation (3) the excluded instruments are the WHO-news after the policy
introduction s;p;; and the four-week post-introduction window w;;. All specifications include the
same set of exogenous controls: Alog C;;, the Moscow campaign dummy M, the holiday index
h;, a linear time trend ¢, and region fixed effects ;. The homoskedastic partial F-statistics are 519
for RR;; and 98 for Av;, above the conventional threshold of 10 (Stock and Yogo, 2005),

indicating strong instrument relevance.

The policy indicator is associated with lower Retail & Recreation mobility, consistent with
restrictions on visits to shopping malls, cafés, and other venues. Vaccinations increase with WHO-
related news, but only once the policy is in place, and they also rise within the short post-policy
window w;,. Holidays raise mobility, while the Moscow campaign dummy is positively related to
vaccination — these controls were specifically designed for their corresponding endogenous
variables. As expected, the coefficient for Alog C;; is strongly negative in the mobility equation

(activity falls when cases rise) and statistically insignificant in the vaccination equation.

5 Identification

In the previous section, I use the policy indicator p;; = 1{t = t,} for QR-code requirements as an
instrument for Retail & Recreation mobility. As shown in Table 2, it is highly relevant since the
estimate is negative (about -14 with p < 0.001) and the homoskedastic partial F-statistic for the
excluded instrument in the RR;; first-stage regression is 519, which is far above the conventional
threshold of 10 (Stock and Yogo, 2005). An event study around 7; (Appendix D) detects no pre-
trends, as the pre-policy indicators p;¢_4, P;¢—3, Pi¢—2 are individually insignificant, as well as
jointly (p = 0.23), when using region-clustered standard errors. The indicator p; ,_; is omitted as
the reference period. Post-policy indicators are significant, with the largest responses for p; 141
and p; ¢+4. The absence of effects for p; .4, and p; ;43 (Joint p = 0.26) is consistent with stepwise
local policy implementation (for example, shopping malls first, restaurants later), which can

plausibly lead to a second decline in activity by week 4.

Turning to the instruments for vaccination, I use two excluded predictors in the first stage
for Av;: the WHO-related news after the policy introduction, s;p;;, and the short-run post-
introduction window w;; (which equals 1 in the four weeks following 7;). Both are relevant in the
first-stage equation for vaccination (Table 2 reports a homoskedastic partial F-statistic of 98 for

the set of excluded instruments). Placebo checks in Appendices E and F support their exclusion



restrictions. The variable s,p;; captures global information shocks about potential WHO approval
of Sputnik V that matter only once local mandates are in place. Such news plausibly shifts
perceived vaccine quality and acceptance but has no direct biological effect on infection dynamics.
Similarly, the four-week window w;; (which equals 1 for weeks t € [t;, T; + 3]) reflects short-run
implementation intensity that increases vaccine uptake but has no direct effect on infections if

behavior and cases are controlled for.

First, the future values of the WHO-news instrument s;,,D; (+x for k € {1,2,3} do not
predict current vaccinations (see Appendix E). The estimates are tiny and jointly insignificant
(Wald test yields joint p = 0.39). Second, for the short-run window w;;, an event study with one-
week pre-policy dummies f;,_, = 1{t = 7; — k} for k € {1,2,3} detects no pre-trend (see
Appendix F). All coefficients are small and jointly insignificant (Wald test yields joint p = 0.20),

while w;, itself remains positive and significant.

A key identification concern is reverse causality: surges in new cases could both stimulate
policy and directly lower mobility. I mitigate this by controlling for Alog C;;, region fixed effects
a;, and a common trend t. Therefore, these tests suggest that vaccination is not predicted by past
values of policy, and there are no reverse-timing effects (future news does not influence the current
uptake), which supports the exclusion restrictions for s;p;; and w;,. All specifications use the same
set of exogenous controls: Alog C;¢, the Moscow campaign dummy M, the holiday index h,, a
linear trend t, and region fixed effects a;. Combined with the strong instruments, this evidence

forms the basis of the identification strategy.

6 Main Model

In this section, I estimate the second-stage regression and discuss the results in detail. First, [ apply
OLS as a baseline model. Then, I implement two-stage least squares (TSLS), using the excluded
instruments described in the previous section to address endogeneity.

Virus transmission is modeled as a function of behavioral activity, new weekly

vaccinations, and a set of control variables:

AlogCityq1 = P1AV; 13 + oAV 16 + P3RR; + Xy +a; + Eit+1s 4)

where 31, 52, B3 are the coefficients to be estimated. The three-week and six-week lags of vaccine
uptake are intended to capture the effect of the first and second doses, respectively. The one-week
lag of cases aggregates the incubation period (see Wu et al. (2022) for evidence on incubation

periods) and the time to receive PCR test results. The controls set X;; contains M, and h; (special



week indicators), a common time trend ¢, and Y;; = Alog C;;. I report OLS estimates for equation
(4) and then compare them with TSLS.

Table 3. Estimation of Cases

Dependent variable: 100 X Alog C; 414
OLS TSLS
Ao, —9.93** —11.62*** —14.09***
b3 (3.14) (2.94) (3.46)
Ao, —12.92" —11.14** —32.47
L6 (2.13) (1.97) (3.38)
RR. 0.02*** B 0.04**
i (0.002) (0.004)
s B 0.01*** B
i (0.001)
AlogC,s 96.97*** 96.09*** 104.34***
(2.78) (2.68) (2.50)
" 0.25%** 0.24*** 0.16"*
t (0.04) (0.04) (0.04)
" —0.23*** —0.22** —0.40***
t (0.04) (0.04) (0.04)
. 0.007*** 0.008*** 0.01*
(0.002) (0.001) (0.002)
a; (region FE) Yes Yes Yes
Partial RR;;:519.14
F (homosk.) B - Av;,:98.22
Observations N XT =563 N XT =563 N X T =550

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical significance

at the 10%, 5%, and 1% levels. Standard errors in parentheses are heteroskedasticity-robust (HC1).

Estimation results for future case growth are reported in Table 3. The dependent variable
is AlogC; ¢4, scaled by 100. Columns 1 and 2 estimate the model using OLS for Retail &
Recreation and Transit Stations as the activity measure. Column 3 reports the TSLS specification
in which RR;;, Av;¢_3, and Av;,_¢ are treated as endogenous. All specifications include region
fixed effects, the current case growth Alog C;;, special-week dummies (M, and h;), and a linear

time trend t. Standard errors are heteroskedasticity-robust (HC1).

Across the two OLS columns, both vaccination lags are negative and highly significant:
the three-week lag ranges from -11.6 to -9.9 and the six-week lag lies between -12.9 to -11.1. In

the TSLS column, the six-week effect becomes substantially larger (approximately -32.5), while
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the effect of the three-week increases slightly to -14.1. This pattern is consistent with protection
building over time, as instrumental variables correct attenuation and simultaneity bias. Activity is
positively associated with next-week cases: this effect rises from nearly 0.01-0.02 in OLS to
approximately 0.04 in TSLS, again consistent with OLS attenuation (for example, measurement
error or negative simultaneity). The epidemic exhibits strong persistence: the coefficient on
Alog C;; isnear 1 in OLS (0.96-0.97 when rescaled back) and slightly above in TSLS (about 1.04).
The linear time trend is significant and does not change dramatically across specifications. These
TSLS patterns are consistent with concerns about downward bias in naive OLS estimates: using
instruments tends to strengthen estimated vaccination effects when endogeneity and measurement

error are mitigated (Hansen and Mano, 2023).

The strength of all instruments is high. The homoskedastic partial F-statistics from the first
stage are 519 for RR;; and 98 for Av;;, which is well above conventional thresholds (Stock and
Yogo, 2005). Overall, the TSLS results reinforce a meaningful protective effect of vaccination

(particularly at six weeks) and a positive causal impact of mobility on subsequent cases.

Following Chernozhukov et al. (2021), I use the acceleration of cases by re-estimating
equation (1) with Y;, defined as Alog AC;, = logAC;; — log AC;;_,. Appendix G shows that the
findings for RR;; are similar to the main specification: the estimate increases from 0.67-0.81 under
OLS to 1.71 under TSLS. For vaccination, the pattern differs: while the six-week lag rises roughly
threefold, from -513 to -1592, the three-week lag weakens from -340 to -229.

Similarly, I model the equation for future deaths as a function of behavioral activity, new

weekly vaccinations, and the same set of controls:

AlogD; ;3 = P1AV;t_3 + B2AV; ¢ + P3RR; + 6AlogD;typ + Xi’ty T &+ Ejrya (5)

I forecast growth of deaths three weeks ahead to align with epidemiological timing: deaths
typically occur about two weeks after case detection, with case detection itself occurring roughly
one week after infection (Linton et al., 2020). I include a one-week lag of the dependent variable
as an additional regressor (Alog D; +.,) to account for serial correlation. Table 4 reports estimates
for equation (5), where the outcome is scaled by 100 to improve readability. Columns 1 and 2
present OLS results with Retail & Recreation and Transit Stations as alternative activity measures,
while column 3 reports the TSLS specification in which RR;;, Av; ;_3, and Av; ._g are treated as

endogenous and instrumented as described above.
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Table 4. Estimation of Deaths

Dependent variable: 100 X Alog D; ;43
OLS TSLS
-0.18 —1.22 4.89
Ave3
(3.88) (3.71) (7.64)
—11.24™ —9.84™* —25.26"
Avie e
(3.98) (3.82) (7.84)
0.02™* 0.04™
RR: —
i (0.01) (0.01)
0.01™
TS; - -
i (0.005)
86.38""* 86.84""* 84.35""*
AlogD; .
(4.21) (4.22) (4.26)
8.09" 87" 56"
Alog Cy 6.87 16.56
(4.28) (4.09) (4.31)
M 0.13" 0.12* 0.03
t (0.08) (0.08) (0.08)
b —0.06 —0.02 —-0.31"
t (0.08) (0.08) (0.10)
; —0.002 —0.002 —0.004
(0.003) (0.003) (0.004)
a; (region FE) Yes Yes Yes
Partial B B RR;:519.14
F (homosk.) Av;;:98.22
Observations N XT =527 N XT =527 N X T =527

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical significance

at the 10%, 5%, and 1% levels. Standard errors in parentheses are heteroskedasticity-robust (HC1).

Mortality is highly persistent: the coefficient for Alog D; ;.. is approximately 84-87 with
p <0.001 across columns (or 0.84-0.87 without scaling). The six-week lag (a proxy for the effect
of full immunization) is negative and significant in all columns (around -11 in OLS and -25 in
TSLS), while the three-week lag is small and statistically indistinguishable from zero. This pattern
is consistent with clinical evidence that protection against severe outcomes strengthens after

completion of full immunization (Andrews et al., 2022; Rahmani et al., 2022).

Activity follows the same pattern as in the results for cases. In particular, Retail &
Recreation mobility is associated with an increase in future deaths: the estimate is 0.02 in OLS
and 0.04 in TSLS. The larger TSLS coefficients relative to OLS are consistent with attenuation

and simultaneity bias in the naive regressions. The Transit Stations index is also positive and
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statistically significant in OLS (about 0.01). The growth rate of cases becomes more significant
once endogeneity in behavior and vaccination is addressed. The linear time trend is insignificant
across specifications, indicating that key time-varying factors are already captured. Taken together,
the TSLS results suggest a meaningful protective effect of vaccination on mortality concentrated

at the six-week horizon and a positive causal effect from mobility to subsequent deaths.

7 Conclusion

The analysis reveals that population mobility and vaccine uptake are the key drivers of short-run
COVID-19 dynamics and that reliable instruments are crucial for isolating their causal effects. The
identification strategy uses three sources of exogenous variation: the timing of regional QR-code
requirements p;; as an instrument for Retail & Recreation mobility, WHO-related news after the
introduction of the mandates s;p;; and a four-week post-policy window w;; as instruments for
weekly vaccination. First-stage diagnostics indicate strong relevance (homoskedastic partial F-
statistic is nearly 519 for mobility and about 98 for vaccination). Moreover, event-study and
placebo tests find no anticipatory patterns: pre-policy indicators for the mandate are jointly
insignificant, future WHO-news terms do not predict current vaccination, and pre-policy one-week
dummies for w;; are jointly indistinguishable from zero. Together with economic arguments for
exclusion (policy timing based on epidemiological guidance and WHO coverage shifting

perceptions rather than biology), these results support the validity of the instruments.

As for cases, the TSLS estimates show a clear protective role of vaccination and a positive
causal impact of mobility on subsequent infections. The six-week vaccination lag (interpreted as
the effect of full immunization) reduces next-week case growth (about -32, compared with -13
under OLS), while the three-week lag is smaller but highly significant (about -14, compared with
-10 under OLS). The activity effect rises when moving from OLS to TSLS (from roughly 0.01-
0.02 to approximately 0.04), consistent with attenuation and simultaneity in naive regressions. The
dynamics of cases are highly persistent (the coefficient on A log C;; is almost 1 in OLS and slightly
above in TSLS).

As for deaths, mortality is strongly persistent (the one-period lag relative to the ¢t + 3
period is between 0.84 and 0.87). The vaccination pattern differs from the results for cases: the
six-week lag is negative and highly significant in TSLS (about -25, compared with -11 in OLS),
while the three-week lag remains small and statistically insignificant. Retail & Recreation mobility
is positively associated with future death growth and the estimate increases in TSLS relative to
OLS (from nearly 0.02 to about 0.04). The current growth rate of cases becomes a significant

predictor of deaths at t + 3 once behavior and vaccination are instrumented.
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The evidence implies that accelerating vaccination, especially completing the full
vaccination schedule, produces substantial reductions in both infections and mortality in the short
run, and that limiting high-contact entertainment activity mitigates transmission and deaths. These
findings are robust across alternative activity proxies (Retail & Recreation, Transit Stations) and
different outcome variables, and they satisfy placebo and event-study checks. Although no
exclusion restriction can be formally proven, the combination of strong first stages, absence of

pre-trends, and economic arguments make a compelling case that the estimated effects are causal.
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Appendices

Appendix A. Federal Subjects of Russia

Code Name Capital
2 Bashkortostan Ufa
16 Tatarstan Kazan
23 Krasnodar Krai Krasnodar
24 Krasnoyarsk Krai Krasnoyarsk
36 Voronezh Oblast Voronezh
52 Nizhny Novgorod Oblast Nizhny Novgorod
54 Novosibirsk Oblast Novosibirsk
55 Omsk Oblast Omsk
59 Perm Krai Perm
61 Rostov Oblast Rostov-on-Don
63 Samara Oblast Samara
66 Sverdlovsk Oblast Yekaterinburg
74 Chelyabinsk Oblast Chelyabinsk
77 Moscow
78 Saint Petersburg

The table lists codes for the Russian Federation's federal subjects and their administrative centers.

Moscow and Saint Petersburg are federal cities, meaning that they function as separate regions.
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Appendix B. WHO News Before Mandates

Dependent variable: 100 X Av;,
o x 0.38™* 1.07**
¢ % Pie (0.08) it (0.15)
0.46 —0.01
Alog C; X (1 —p;
08 Lit (1.90) se X ( Pit) (0.02)
M 0.79* Pre-mandate WHO news = 0 (Wald):
‘ (0.06) F(1,616) = 0.28,p = 0.60
0.12
h
¢ (0.07)
; 0.02™*
(0.002)
a; (region FE) Yes Observations N XT =635

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are
heteroskedasticity-robust (HC1). The variable s; X (1 — p;;) captures the influence of WHO-
related news on vaccination decisions before the introduction of mandates, and it is statistically

indistinguishable from zero.
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Appendix C. TSLS with Exogenous RR

First St Second Stage
1rs' age Dependent variable: 100 X Alog C; 141
Dependent variable: 100 X Av;, :
OLS TSLS
< x 0.35*** Av —4.81" —12.94*"
£ % Pir (0.09) L3 (2.69) (3.57)
1.13* —14.52"* —35.14""
Wit Avi,t—ﬁ
(0.16) (2.05) (3.45)
—0.01 —0.04" —0.05""
St St
(0.02) (0.01) (0.01)
—0.09 —0.52" —0.55""
Pit (0.13) Pit (0.08) (0.08)
0.51 92.62*** 94.29***
AlogC; Alog C;
08 Lt (1.92) 08 Lit (2.93) (3.10)
M 0.77* M 0.13" 0.12*
‘ (0.07) t (0.04) (0.04)
0.12* —0.08" —0.05
h¢ he
(0.07) (0.04) (0.04)
, 0.02*** , 0.02™ 0.03***
(0.003) (0.002) (0.003)
a; (region FE) Yes a; (region FE) Yes Yes
Partial F —0.001 0.000
94.81 RR;
(homosk.) i (0.004) (0.003)
Observations N X T =635 Observations NXT =563 | NXT =550

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are

heteroskedasticity-robust (HC1). The homoskedastic first-stage partial F-statistic for the excluded

instruments s; X p;; and w;; is 94.81 (exceeds the conventional threshold of 10), indicating strong

relevance. The Wald test of the joint null (s; = 0, p;; = 0) in the first stage yields F=0.40, p=0.67.

In this robustness, only vaccination is instrumented, while RR;; is treated as exogenous, which

leads to tiny coefficients.
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Appendix D. Event Study for Policy

Dependent variable: RR;;

F(2,11) = 1.53,p = 0.26

—5.67"** —0.76
Pit (2.05) Pit-s (1.61)
—298.19" —0.80
Alog Gy (44.67) Pit-3 (1.37)
, —1.30* ' —0.91
t (0.71) Pit-2 (1.61)
. 5.21* ' —3.89*
t (0.90) Pit+1 (1.52)
. 0.47*** N 0.79
(0.02) Ltz (1.85)
. 0.08
a; (region FE) Yes Dit+3 (1.61)
Pre-policy (-2, -3, -4) jointly zero: —4.75"
F(3,11) = 1.70,p = 0.23 Pit+a (1.35)
Post-policy (+1, +2, +3, +4) jointly zero:
F(4,11) = 23.71,p < 0.01
Mid-window (+2, +3) jointly zero: Observations N xT = 552

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are

cluster-robust (by region). The indicator p; ,_; is omitted as the reference period.
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Appendix E. Placebo test for the WHO news instrument

Dependent variable: 100 X Av;,

W 0.99"* Sper X Dy 0.0002
it (016) t+1 i,t+1 (009)
Alog Gy (117323 St+2 X Pit+2 (8(1)(3;)
M, 076" St+3 X Pit+3 0.14
(0.07) ' (0.09)
b —0.03 Post-policy (+1, +2, +3) jointly zero (Wald):
‘ (0.09) F(3,579) = 1.00,p = 0.39
, 0.02™*
(0.002)
a; (region FE) Yes Observations N xXT =599

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are

heteroskedasticity-robust (HC1).
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Appendix F. No pre-trend in short-run policy window

Dependent variable: 100 X Av;,
o x 0.35** w 1.20"**
¢ % P (0.06) it (0.30)
3.40 0.01
Alog C; b
08 bt (2.68) Jue (0.49)
M 0.76** f 0.06
t (0.13) btz (0.26)
0.10 0.48*
hy fit-3
(0.08) (0.26)
¢ 0.02 Pre-policy (-1, -2, -3) jointly zero (Wald):
(0.002) F(3,11) = 1.83,p = 0.20
a; (region FE) Yes Observations NXT =611

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical

significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are

cluster-robust (by region). f;,_, are one-week dummies, specifically f;,_, = 1{t = t; — k},

where 7; denotes the week when policies in region i were introduced.
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Appendix G. Estimation of Cases (Acceleration)

Dependent variable: 100 X Alog AC; ;44
OLS TSLS
Ao, —340.09*** —420.66*** —229.47*
L3 (128.46) (117.25) (135.72)
Ao, —513.87*** —429.24** —1591.66**
L6 (106.49) (99.32) (181.86)
RR. 0.81*** B 1.71
i (0.10) (0.15)
0.67***
TSu B (0.08) -
—112.51 77.47 354.91*
Alog C;;
(92.71) (88.74) (91.85)
" 9.02*** 8.47*** 477
‘ (1.45) (1.39) (1.48)
" —12.77** —12.68*** —18.86"*
t (2.45) (2.30) (2.32)
. 0.19** 0.22*** 0.37***
(0.08) (0.07) (0.08)
a; (region FE) Yes Yes Yes
Partial RR;;:519.14
F (homosk.) B - Av;,: 98.22
Observations N X T =563 N XT =563 N X T =550

N denotes the number of regions, T denotes the number of weeks. Asterisks indicate statistical
significance at the 10%, 5%, and 1% levels, respectively. Standard errors in parentheses are

heteroskedasticity-robust (HC1).
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