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Abstract

A set A of m indivisible objects is to be fully allocated between n agents;

each agent i is to get exactly qi objects (so
∑

i qi = m). Agents only report

their ordinal preference orderings �i of single objects in A. Thus, mechanism
designer can only partially compare allocations of an agent, based on stochastic

dominance.

We look for fair and effi cient allocations, using new notions of fairness “up

to one upgrade”, stronger than traditional “up to one good”ones, and more

appropriate for model with “quotas”qi. Since individual shares’sizes qi differ,

fairness comparisons are based on the average valuation.

We demonstrate that in our model, ordinal effi ciency (“OE”, weaker con-

dition than Pareto effi ciency), and ordinal envy-freeness up to one upgrade

(“oEFu1”, stronger condition than cardinal one) are compatible.

We first show that the set of OE allocations is exactly the set of alloca-

tions obtained by queueing rules. Next, we show that a “fair” queue, which

guarantees oEFu1 for any preferences, exists and is essentially unique.

∗anna.bogomolnaia@glasgow.ac.uk; University of Glasgow, CNRS Université Paris 1, and HSE
St. Petersburg.
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1 Introduction

This paper contributes to the now classical discrete fair division problem. A finite

group of agents N = {1, ..., n} needs to divide between themselves a finite set of
objects A = {a1, ..., am} (items, goods/chores, tasks, resources, etc.). Objects are
indivisible, and no monetary transfers or lotteries are available. Thus, the only fea-

sible allocations are partitions Z = (Z1, ..., Zn) of A. Agents have private valuations

vi for single objects, and additive utility functions over subsets of A (“shares”, or

“bundles”) they might receive. The main concern of fair division literature is how

to use heterogeneity of preferences to make all agents suffi ciently happy. A first

question would be: given a preference profile, does there exist an effi cient and fair

allocation? And if yes, how to find it? Effi ciency is traditionally interpreted as

simply Pareto Optimality (PO) (though we will depart from this —see below). The

issue of fairness is much more subtle. Coming from continuous fair division models,

two main notions of fairness are Proportionality (PROP) and Envy-Freeness (EF).

Proportionality (also often called Fair Share) requires that each of n agents gets at

least 1
n
-th of her valuation of the whole set A. Envy Freeness is a stronger condition,

and demands that each agent views her share as the best one in the partition. In

the discrete model, those properties are clearly out of reach due to indivisibilities.

Think about A which consists of one diamond and many rocks. Anyone who does

not get a diamond will envy the diamond owner, and will receive less then their fair

share of A.

Thus, one can at best hope for some approximative fairness. An extensive litera-

ture on this model, which emerged in last two decades, uses fairness notions “up to

one object”, and dubs them PROP1/EF1. While an agent may value her share less

then the appropriate fraction of the whole, or less then the share of another agent,

the difference with the fair value does not exceed her valuation of a single object.

Her share S would satisfy a property if she would be allowed to add one object to

S or to disregard one object (in S, or outside S). This should be interpreted as a

“thought experiment”, rather then actual objects’transfer.

Operating with those definitions, preceding literature thoroughly investigated
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the existence of fair and effi cient allocations, algorithms to compute those, their

complexity, and many related questions. PROP1/EF1 are invariant with respect to

linear transformations of utility, but heavily depend on the change of zeros. Thus,

cases of “goods”(all vi ≥ 0), “bads”/“chores”(vi ≤ 0), or “mixed objects”are very

different. A lot is known for the case of “goods”. For example, an allocation which

maximizes the product of utilities is both PO and EF1 (See Caragiannis at al. (2019)

[7]). Cases of “chores”and, especially, arbitrary sign valuations, proved to be less

tractable so far. See, in particular, Amanatidis at al. (2023) [1] for recent surveys

on fair division of indivisible items.

We stay within the above discrete model, but impose an additional condition of

exogenously specified shares’sizes qi. In many practical instances, agents are indeed

entitled to (or constrained by) pre-specified objective share sizes.

As a mock example, suppose that n agents order food together (pizzas, desserts,

etc.). Each agent pre-specified the quantity she will want to eat. They receive a set

of items in various flavors, each item is pre-cut in several slices, and further cutting

is impractical. Agents have different tastes over flavors, they can mix and match

(but not cut) slices, and each agent is to get in total exactly as many units as she

ordered.

More seriously: Workers might need to divide a set of chores or shifts, while

their contracts specify different numbers of working hours or projects to do. Team

managers may want to split a given set of employees into teams of different specified

sizes to complete different tasks. Dissolving a partnership or allocating an estate

can come with different pre-specified “objectively”measured (for example, in terms

of market monetary value) entitlements for involved parties. A processing server

may need to schedule agents with portfolios of tasks of variable volumes. A charity

might be distributing housing or food between family units or community groups of

different sizes. Etc.

We assume that each agent i is assigned a size (or “quota”) qi ∈ N, with
∑

i qi =

m. Her feasible potential shares are all subsets S ⊂ A of the size |S| = qi. While

her utility from a feasible share S is still the sum of her valuations of objects in S,

she might even not have a well defined utility for shares of other sizes (or this utility
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could be a large negative number). Hence, approximate fairness “up to 1 object”is

a much less natural concept. We propose to require instead that an agent’s value

from her share is fair up to a difference between utilities of two single objects (one

from her bundle and one from outside). An important additional benefit of using

approximations based on differences of utilities is that, combined with all feasible

shares of a given agent being of the same size, it makes our setting invariant to

affi ne transformations of utilities. Thus, we can treat cases of goods, chores or mixed

objects simultaneously.

A companion paper (Bogomolnaia at al (2024) [5]) considers the case of identical

quotas and adopts “up to one flip”(single objects’exchange) notions, “PROPf1/EFf1”.

Before verifying whether agent i’s share satisfies some fairness criterion, we are al-

lowed to do a thought experiment of exchanging one of her objects for some object

outside her share. PROPf1/EFf1 are neither stronger nor weaker than traditional

PROP1/EF1.

We propose to use approximate fairness “up to 1 upgrade”, “PROPu1/EFu1”.

Here, before checking fairness, an agent is allowed to “upgrade”one of her objects

up to the best one from outside her share S (either from A\S or from the share T

of another agent). Those concepts are stronger1, and imply both PROP1/EF1 and

PROPf1/EFf1. EFu1 is still stronger then PROPu1.

Importantly, in our model, given agents’different size quotas, they cannot directly

compare their shares with either shares of others, or with 1
n
-th of the total A. Instead,

we adopt the notions of “fairness on average”. An agent i should believe the average

“quality”(i.e., valuation) of objects in her share to be at least as good as the average

of the whole set A (PROP), or at least as good as the average quality (in i’s own

valuation) of objects in any other share (EF).

Consider for example, n project leads (agents) who are to divide a given set

A of workers (objects) between them. Each lead i has to create a team to work

on a specific project, and needs a specified number of workers qi for it. They are

looking for different skills sets, so their preferences over workers are different. A

1Arguably, those are the most strong fairness concepts feasible in discrete setting. See the
discussion later.
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“fair”allocation would be one where each lead thinks that the average quality of her

workers is better than the average quality of workers in any other team, and/or than

average quality of all workers.

Some of the preceding literature discussed various restrictions on the size of indi-

vidual bundles. Most typical assumption is that objects come in different types and

agents have some limits on number of objects from each type. Fairness is still eval-

uated based on total baskets’values. See, for example, the surveys by Suksompong

(2021) [9], Biswas at al. (2023) [4]. A “weighted”model was also proposed, where

agents are assumed to have different utility “entitlements”(without restrictions on

bundle sizes), and fairness is evaluated in proportion to entitlements (see Aziz at

al. (2020) [2], Chakraborty at al. (2021) [8]). This literature is concerned with the

existence of traditional PROP1/EF1 fair allocations, and does not discuss effi ciency.

While our fairness “on average”seems similar in spirit to that in weighted models,

the implications are very different. We do not assume that some agents have more

rights then others in terms of utilities. We assume instead that they have different

exogenous restrictions. In particular, the sets of feasible allocations, and hence of

effi cient ones, are very different in those two models. Say, in our setting, a part time

instructor has to teach 2 courses, while a full time one has to teach 4. We do not

interpret it as if the full-time person has twice as much rights and so is entitled to

twice as much utility. If this would be the requirement, it might well be that the best

partition would assign different numbers of courses to each instructor —not 2 and 4,

but 3 and 3 or 1 and 5. Instead, we aim for each instructor to like, on average, the

courses she teaches better than the courses the other person is assigned to.

Our goal is to investigate till what extent effi ciency and fairness are compatible

in our model with size restrictions. A companion paper (Bogomolnaia at al. (2024)

[5]), which only considers the case of equal shares (qi = q for all i), shows that the

existence of PO and fair (either PROP1/EF1 or PROPf1/EFf1) allocations under

quotas is a diffi cult open question so far. They are only shown to exist on some

restricted domains, like identical utilities, or 0-1 utilities, or for two agents. We thus

would like to investigate this problem from a very different prospective.
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We depart from the notions of cardinal valuations reports and full Pareto Opti-

mality, and work in the ordinal input framework.

We assume that agents have cardinal valuations for individual objects, and ad-

ditive valuations of shares. However, agents only report their ordinal rankings of

objects in A (which could be strict or not). An important attractive feature of this

setting is its reduced information requirements. We ask much less from agents in

terms of formulating and transmitting their preferences. Note also, that mechanisms

observed in real life almost exclusively rely on ordinal data only.

This (incomplete) ordinal information still allows mechanism designer to compare

some (but not all) potential shares from the point of view of a particular agent.

Suppose that we know how an agent ranks individual objects, and she is presented

with two bundles S and T of the same size. If she prefers her top object in S to her

top object in T , her 2-nd best in S to her 2-nd best in T , etc., then we can be sure

that she would value S above T , no matter what is her cardinal valuation function.

We hence say that S “ordinally dominates”T for this agent. Otherwise, depending

on her cardinal utility, her choice between S and T can go either way.

Ordinally Effi cient (OE) partitions are those which are not ordinally dominated

for all agents by any other partition. This is clearly a weaker notion then PO.

In the same spirit, we can define ordinal versions of PROP and EF, oPROP and

oEF. Player i’s share is oPROP/oEF iff it is PROP/EF for any valuation vi compati-

ble with her reported ranking �i. We further define their approximate variants, up to
one upgrade etc. Contrary to OE, oPROP and oEF, as well as their approximations,

are stronger requirements then cardinal ones.

Mechanisms with ordinal input, and corresponding ordinal notions of effi ciency

and fairness, were proposed and extensively studied in the framework of random

assignment without money (see Bogomolnaia, Moulin (2001) [6]). As in our model,

a finite set of indivisible objects is to be divided between agents with heterogenous

preferences, and all agents have quotas on the number of objects. The standard

case is n agents, n objects, and all quotas q1 = 1. However, in an attempt to

guarantee fairness (at least ex-ante), lotteries between deterministic allocations are

allowed. While agents compare lotteries over objects based on their cardinal expected
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utilities, the mechanism only collects the information about agents’ordinal orderings

of pure objects. We notice the conceptual parallel between comparing probability

distributions over fixed number of objects and comparing baskets of objects of the

same size, when only the ordering of single objects is known.

Our main result is to show that ordinal effi ciency and ordinal fairness up to one

upgrade, OE and oEFu1 (and hence oPROPu1), are always compatible. Moreover,

there is essentially a unique method to guarantee OE and oEFu1 no matter agents’

preferences.

In the case of identical quotas, i.e. when all qi = q, it is relatively easy to show that

good old Round Robin rule (when we order agents arbitrarily and let them choose

single objects in turn, one by one, in n
q
rounds) fits the fairness bill. For arbitrary

quotas, we first provide a complete characterization of OE allocations. They happen

to be exactly the ones resulting from different queueing rules, where each agent i is

present in the queue exactly qi times, and each time it is her turn picks one object (the

best for her among still available ones)2. We then show that among those queueing

rules there always exists a “fair”one, which is an appropriate generalization of the

traditional Round Robin queue, and that it guarantees our fairness requirements

(oEFu1, and hence oPROPu1). Moreover, such an “EF balanced”queue is essentially

unique3.

Consider a queue p = (p1, ..., pm) where each agent i appears qi times. Intuitively,

it is “fair”if all agents are evenly spread along p. More specifically, let rh[i] be the

number of times agent i appears in a truncated queue ph = (p1, ..., ph). We would

like, for each h, to have all fractions rh[i]/qi (number of i-th positions in ph relative

to her total quota) to be approximately equal.

Queueing rules to pick objects in turn are closely related to “house monotone”

apportionment methods of allocating parliament seats between n states with different

populations qi, when the number of house seats increases from 1 to m =
∑
qi. Our

2When indifferences are allowed, this definition is refined in an appropriate way to guarantee the
full Pareto effi ciency of the resulting queueing allocation if sub-agents are thought of as independent
actors. See below.

3See the precise discussion later.
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EF balanced queues correspond exactly to the Jefferson method of apportionment

(see Balinski and Young (1981) [3] for a comprehensive discussion on apportionment

rules).

In the context of weighted utilities model, Chakraborty at al. (2021) [8] also

consider “fair” queues (which they call “pecking sequences”), in a similar to ours

spirit. They do not look at effi ciency, and use “up to 1 object”PROP1/EF1. Their

notions of “weighted fairness”are based on entitlements to shares of welfare wi, rather

then quotas qi on numbers of goods. Their “fair” queues approximately equalize

rh[i]/wi for each truncated queue ph (which has different implications, compared to

our model)4. They present a family of pecking sequences satisfying their fairness

axioms, and connect them to different apportionment methods.

While a fair queue guarantees a fair allocation, we can of course have (ordinally)

fair allocations resulting from very unfair queues. When preferences of agents are

suffi ciently heterogeneous, essentially any queue would generate a fair allocation.

However:

Any OE allocation rule, for each preference profile �, has to pick an allocation
Z which results from some queue p = p(�). We might want this queue to be the

same for all profiles � (say, we are deciding on an institutional policy of fair division,
which will then apply in a variety of situations and for different sets of agents). We

show that the only p, which guarantee fairness no matter �, are “EF balanced”ones.
Thus, there exists (essentially unique) institutional rule Fp which would guarantee

OE and ordinal fairness for any preferences.

We would like to emphasize that our results are obtained for the full domain

of cardinal/ordinal preferences, when agents potentially can be indifferent between

objects. Full domain assumption is known to create many additional technical dif-

ficulties for mechanism design. Proofs become much more involved, results valid

4In weighted model, an agent typically does not get her exact fair share wivi(A) of total utility
at the end of “pecking”. In particular, if wi are significantly different and m = n, some agents
would get no objects, while some others would get at least two. Because of this, though in weighted
model there are many different weighted “fair” queues, they do not include our “EF balanced”
queue.
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on the strict domain often fail to extend, various possibilities of tiebreaking allow

for a wide variety of often intractable and unattractive rules to emerge, and many

questions stay open. Many of our proofs in this paper are relatively straightforward

for the case of strict preferences, compared to much more involved arguments we

provide for the case with indifferences.

2 Notation and preliminaries: Ordinal Effi ciency

and Approximate Fairness

N = {1, ..., n} is a set of agents, A = {a1, ..., am} is a set of objects, |N | = n,

|A| = m. We will usually use letters i, j for agents and a, b, c, s, z for objects. Each

i ∈ N is entitled to a share of exactly qi ∈ N objects, with
∑

i qi = m, and has

an ordinal ordering �i over A. Presumably, it comes from some cardinal valuation

function vi : A→ R which respects this ordering, though vi is not known to anyone
except agent i.

We define the total valuation of a bundle S ⊂ A to be vi(S) =
∑
a∈S

vi(a).

We however assume that agent i’s preferences over subsets of A (of any size!) are

determined by the utility function based on average valuation: ui(S) = 1
|S|
∑
a∈S

vi(a).

A feasible allocation is a vector-partition of A into n sets, Z = (Z1, ..., Zn), where

|Zi| = qi for all i, Zi are disjoint, their union is A, and each agent i receives the share

Zi.

Given a set S ⊂ A, we will use notation S = (s1, ..., sq)i for a vector of elements

of S, ordered in decreasing order of preferences of agent i (i.e., s1 �i ... �i sq).
Definition 1 Ordinal Dominance (OD) Let S, T ⊂ A, |S| = |T | = qi, S = (s1, ..., sqi)i,

T = (t1, ..., tqi)i. We say that agent i “ordinally prefers”S to T , and write S ODi T ,

iff sk �i tk for all k. ODi is strict iff at least one of these inequalities is strict.

The binary relationODi is transitive but not complete one on the set of all S ⊂ A,

|S| = qi. The following equivalence will be important.
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Lemma 1 S ODi T if and only if for any cardinal valuation vi : A → R which

respects �i we have
∑
s∈S

vi(s) ≥
∑
t∈T

vi(t) (strictly iff at least one of these inequalities

is strict for at least one vi).

Proof. (of “⇐=”, “=⇒”is obvious)
Assume S = (s1, ..., sqi)i does not ordinally dominate T = (t1, ..., tqi)i for agent

i. Pick the smallest r such that tr �i sr. Let ε > 0 < ε < 1
2qi
. Consider a

valuation vi with vi(c) ≥ 1 − ε for all c �i tr (“top objects”), and vi(d) ≤ ε for

all d with tr �i d (“bottom objects”). Then vi(T ) ≥ r(1 − ε) ≥ r − qiε, while

vi(S) ≤ (r − 1) + (n− r + 1)ε ≤ r − 1 + qiε. Hence, vi(T ) ≥ vi(S).

When mechanism designer only knows ordinal input, the only way for him to

guarantee that an agent prefers given bundle S to another T is to make sure that S

ordinally dominates T for this agent. In terms of effi ciency, usually the best ordinal

design can guarantee is that the proposed allocation would not be dominated. We

thus define

Definition 2 Ordinal Effi ciency (OE) Let Z = (Z1, ..., Zn) and Y = (Y1, ..., Yn) be

two feasible allocations. We say that Z ordinally dominates Y , and write Z ODY , iff

ZiODi Yi for all i ∈ N , and domination is strict for at least one i. Ordinally Effi cient
(OE) partitions are those which are not strictly dominated by any other partition.

Ordinal Effi ciency is clearly a weaker concept then full Pareto Optimality. We

however, still interpret fairness as evaluated by an agent herself (and she is aware of

her cardinal valuations). Consistently with the previous literature on ordinal input

mechanism design, the notions of fairness we consider (Proportionality and Envy-

Freeness) can be re-defined in an ordinal way. Relying on Lemma 1, we define an

“ordinally fair”allocation as one which is “fair”for ALL cardinal valuations which are

compatible with the reported ordinal orderings. Those are very strong requirements.

They guarantee corresponding “fairness” in full, even though mechanism designer

has incomplete information on agents’preferences.

Indeed, effi ciency is evaluated for the whole allocation, and by the mechanism

designer, who has incomplete information about agents’preferences (just their ordi-

nal orderings), so full PO is usually out of reach. However, fairness is evaluated by
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each agent herself, and she knows her own preferences in full. In order to guarantee

fairness, the designer has to pick an allocation which would be fair for all potential

cardinal valuations.

When defining approximate fairness in our model, we keep in mind that, for

each agent i, only shares of size qi are feasible. As in traditional discrete fair share

setting, we allow for a small change in allocation to be contemplated before a fairness

criterion is checked. However, instead of disregarding an object or adding it to i’s

allocation, we will allow an agent to “upgrade”one of her goods to the value of the

best for her outside object. This will keep her allocation feasible.

We also need to clarify how an agent compares her share with a share of different

size (so not feasible for her), belonging to someone else, or with the total A. We sub-

mit that a natural way of comparison in this case would be by “average value”of the

objects. When comparing her bundle with another bundle of probably significantly

different size, an agent cares about the average “value” or “quality” of both, not

about sums of the valuations of objects in each bundle. If, say, a part-time worker,

who by her contract only works 10 hours per week, compares her set of tasks with

that of a full-time person, she deems an allocation of projects fair if in her opinion

the average value (diffi culty, level of interest, etc.) of her assigned projects is at least

as good as the average value of the projects assigned to that other person.

Our fairness notions are proportionality and envy freeness “up to one upgrade”.

We refer to them as PROPu1 and EFu1. Before comparing her share with that

of another agent or with the whole set A, an agent i is allowed to do a “thought

experiment” of upgrading one item in her bundle to the value of an outside item

(from the bundle of that other agent or from the whole A). Our approximate fairness

is ensured if post upgrade i would think the allocation fair.

Let S, T ⊂ A, a, b ∈ A. We will often use notation “S + T”, “S + a”for S ∪ T ,
S ∪{a} (especially when S, T are disjoint, or a /∈ S), and “S−T”, “S− a”for S\T ,
S\{a} (especially when T ⊂ S, a ∈ S).
For any S ⊂ A, any a ∈ S, and any b /∈ S, we define Sba = S∪{b}\{a} = S+b−a,

and refer to Sba as “S after b-a flip”or “S after b-a upgrade”. This is a set agent
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i can obtain if she is allowed to “upgrade”her share S by substituting one of her

objects a by some object b outside her bundle.

Fix a feasible allocation Z = (Z1, ..., Zn), and an agent i with ordinal ranking �i
over A; assume she also has a cardinal valuation function vi : A → R representing
this ranking. Recall that ui(S) = 1

|S|
∑
s∈S

vi(s).

Definition 3 Fairness (Proportionality principle)
—Agent i is PROP at Z iff ui(Zi) ≥ ui(A).

—Agent i is PROPu1 at Z iff either she is PROP or there exists Zba
i , an b-a upgrade

of Zi, such that ui(Zba
i ) ≥ ui(A).

—Agent i is PROP’u1 at Z iff either she is PROP or there exists Zba
i , an b-a upgrade

of Zi, such that ui(Zba
i ) ≥ ui(A\Zi).

—Agent i is oPROP• at Z iff she is PROP• for any vi respecting �i.

Under PROPu1, an agent compares her upgraded share with the whole set A.

Under PROP’u1, she compares it with the the set of all objects other agents get.

While we believe that PROPu1 is more appropriate then PROP’u1, we introduce

both for completeness. Also, as we will see, as PROP’u1 is an intermediate property

between PROPu1 and EFu1, using it allows us to simplify some of our arguments.

Definition 4 Fairness (No Envy principle)
—Agent i is EF (envy-free) w.r.t. agent j at Z iff ui(Zi) ≥ ui(Zj).

—Agent i is EFu1 w.r.t. agent j at Z iff either she is EF w.r.t. j or there exists an

b-a upgrade of Zi with b ∈ Zj, such that ui(Zba
i ) ≥ ui(Zj).

—Agent i is oEF• w.r.t. agent j at Z iff she is EF• w.r.t. j for any vi respecting �i.
—Agent i is EF•/oEF• iff she satisfies this requirement w.r.t. all j 6= i.

We submit that our definitions are not just the most appropriate for our setting,

but also the most strong requirements among those known.

Let us compare fairness up to one upgrade to other notions of approximate fair-

ness, “up to one object”(PROP1/EF1) and “up to one flip”(PROPf1/EFf1). Both

of them were mostly used for the case where agents are interested in the total valu-

ations of bundles vi(S) =
∑
a∈S

vi(a), not the averages ui(·).
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Under “up to one object” relaxation, definitions (and results) differ depending

on the signs of vi. They require that an individual share Zi should become fair if we

allow an agent i to either add one object to Zi (an appropriate action for “goods”,

when vi(·) ≥ 0), or to disregard one of her objects in Zi (an appropriate action

for “chores”, when vi(·) ≤ 0). The underlying idea is that, though agent i’s utility

could be smaller than her fair value, the difference between her valuations of her own

bundle and of the set she compares it with is small, in that it does not exceed her

value of a single object.

Various extensions and relaxations of the “up to one good”principle were pro-

posed for the case of mixed objects. Our goal is not a full comparison of all possible

variants, so we concentrate on the cases when all vi(·) are of the same sign.
Fairness “up to one object”

—Agent i is PROP1 at Z (under vi) iff either she is PROP or there is either b /∈ Si
such that ui(Zi + b) ≥ ui(A), or a ∈ Zi such that ui(Zi − a) ≥ ui(A).

—Agent i is EF1 w.r.t. agent j at Z (under vi) iff either she is EF w.r.t. j or

there exists either b ∈ Zj such that ui(Zi + b) ≥ ui(Zj), or a ∈ Zi such that

ui(Zi − a) ≥ ui(Zj).

—Here, EF1 implies PROP1.

“Up to one flip”relaxation was introduced for the case with identical quotas as a

more appropriate one when feasible size of an individual bundle is fixed. Note that

when all qi = q there is no difference between evaluating bundles according to either

totals or averages.

Up to one flip properties do not depend on the sign of vi. They require that

an individual share Zi should become fair if we allow an agent i to do one “flip”,

exchanging one of her objects for one object outside her bundle. For the case of

EFf1, contrary to “up to one upgrade”notion, a flip changes not only the share of

this agent i, but also the share Zj of the other agent j with which she compares her

Zi. A flip means that j gives one of his objects to i and gets her object in return.

Here, again, though agent i’s utility could be smaller than her fair value, the

difference between her valuations of her own bundle and of the set she compares

it with is small. But now “small”means “not more then twice difference between
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utilities of two objects”.

Fairness “up to one flip”

—PROPf1 is the same as PROPu1.

—Agent i is EFf1 w.r.t. agent j at Z (under vi) iff either she is EF w.r.t. j or there

exists an b-a flip of a ∈ Zi with b ∈ Zj such that ui(Zba
i ) ≥ ui(Z

ab
j ).

—EFf1 does not imply PROf1, but guarantees 1
2
-PROPf1 (see Bogomolnaia at al.

(2024) [5]).

There is an important conceptual difference between traditional PROP1/EF1

properties and “up to one flip”/“up to one upgrade”ones.

For simplicity of notation, consider the case of identical quotas qi ≡ q. In this

case, we can use comparisons based on vi(S) =
∑
b∈S

vi(b) for all fairness properties.

EF1 can be rephrased as: vi(Zj)−vi(Zi) ≤ max
b∈Zj

vi(b) (case of “goods”) or vi(Zj)−
vi(Zi) ≤ −min

a∈Zi
vi(a) (case of “chores”), i.e. “even if i prefers j-th bundle, she believes

that the utility difference between two bundles is small – no more then her valuation

of a single object”.

EFf1 (up to one flip) requires vi(Zj) − vi(Zi) ≤ 2[max
b∈Zj

vi(b) − min
a∈Zi

vi(a)], “the

difference of utilities between my and your bundles is at most twice the difference

between single objects’valuations - one yours and one mine”.

Finally, for our EFu1 (up to one upgrade), the requirement is

vi(Zj)− vi(Zi) ≤ max
b∈Zj

vi(b)−min
a∈Zi

vi(a).

More generally, we could consider, for any K > 0, a requirement “EF[K]”:

vi(Zj)− vi(Zi) ≤ K[max
b∈Zj

vi(b)−min
a∈Zi

vi(a)],

so EFf1 is EF[2], and EFu1 is EF[1]. In the example with one diamond and many

rocks, however, there are no EF[K] allocations forK < 1. Thus, our EFu1 is probably

the strongest meaningful requirement for approximate envy freeness.

It is easy to see from the above discussion5 that

Lemma 2 (1) EFu1 implies PROP’u1 (and they are equivalent for n = 2).

5See also the discussion about PROP1/EF1 versus PROPf1/EFf1 in Bogomolnaia at al. (2024)
[5].
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(2) EFu1 is stronger then both EF1 and EFf1 (who do not imply each other).

(3) PROP’u1 is stronger than PROPu1. PROPu1 implies PROP1 (for same sign

valuations) and is the same as PROPf1.

Proof. (of (1), the rest follows from the discussion above)

Let Z = (Z1, ..., Zn) be EFu1 for agent i. Let a ∈ arg min
c∈Zi

vi(c), b ∈ arg max
c∈A−Zi

vi(c),

b ∈ Zk for some k 6= i. Thus, Zba
i is (one of) the best possible upgrade(s) for agent i.

Let S ∈ arg max{ui(Zi), ui(Zba
i )}. By EFu1, U ′ = ui(S) ≥ ui(Zj) = Uj for all j 6= i.

Hence, U ′ ≥ 1
m−qi

∑
j 6=i

qjUj = ui(A\Zi) and we have PROP’u1.

Our notions of approximate fairness “up to one upgrade”(as well as “up to 1 flip”

ones) are based on differences between utilities of two objects, not on a valuation of

a single object. In addition, in our setting all potential feasible bundles of a given

agent have the same size.

As a result, these fairness properties are invariant under affi ne transformations

of utilities. If we rescale valuations of an agent i from vi to v̂i(·) = αivi(·) + βi,

with any αi > 0 and any βi, her preferences over feasible bundles do not change, as

well as whether a given allocation is PROPu1, PROP’u1 or EFu1 for her. However,

it can affect PROP1 and/or EF1 when βi 6= 0. Those traditional properties are

preserved under linear transformations, but are sensitive to the changes of zeros. As

an illustration, let Z1 = {a, a, a}, Z2 = {b, b, b}, and the valuations change from
v1(a) = 1, v1(b) = 4, to v̂1(·) = v1(·) + 10. Under v1, Z is neither PROP1 not EF1

for agent 1, while under v̂1(·) the same Z satisfies both.
In particular, when we investigate compatibility of effi ciency and fairness “up

to one upgrade”, we can normalize utilities in various convenient ways, and treat

simultaneously the cases of “goods”, “chores”, or mixed items. This applies to both

ordinal and cardinal setting. If we are looking for fairness “up to one good”, those

cases are very different even under quotas (as is it is in the unrestricted model).

We will now discuss a natural set of allocation rules in our model, based on

agents queueing for objects. It turns out that those rules generate exactly the whole

set of ordinally effi cient allocations. Moreover, as we will see, there always exist
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“approximately fair” ways to organize the queue, which guarantee the (stronger)

ordinal versions of PROPu1, PROP’u1, and EFu1 properties.

Queueing rules

Fix N , A, q = (q1, ..., qn), and �= (�1, ...,�n).

For each agent i, create qi sub-agents, i1, ..., iqi , who all have the same preference

ordering �i and are entitled to one object each.
Let Z = (Z1, ..., Zn) be a feasible allocation. Assign each Zi to qi sub-agents of

agent i in an arbitrary way (each sub-agent gets one object from Si). We treat the

resulting allocation Z̃ as a feasible allocation to m =
∑

i qi sub-agents, thought of as

independent agents, each entitled with size quota 1. It is easy to see the following

Lemma 3 Allocation Z is OE for the set N of n agents 1, ..., n if and only if any

corresponding Z̃ is PO as a feasible allocation to those m sub-agents, each entitled

to one good.

Proof. “=⇒”Consider an OE Z. Suppose that for a corresponding allocation to

sub-agents Z̃ there exists a Pareto improvement Ỹ , and let k = ir be a sub-agent

of i who strictly prefers Ỹ to Z̃. Then in corresponding to Ỹ allocation to agents

Y = (Y1, ..., Yn) we have Yj ODj Zj with strict domination for agent i. Hence Y

ordinally dominates Z.

“⇐=”Let Z̃ be a PO for sub-agents, corresponding to Z = (Z1, ..., Zn). Suppose

that Y = (Y1, ..., Yn) ordinally dominates Z with YiODi Zi being strict for some

agent i. We can then construct Ỹ corresponding to Y , where each sub-agent jr is

assigned a good yir which she prefers to her good in Z̃, with at least one preference

(for one of i-th sub-agents) being strict. This Ỹ will Pareto dominate Z̃.

A queue p is an ordering of all m sub-agents; p = (p1, ..., pm).

Define ph = (p1, ..., ph) to be the truncated at h queue p (one consisting of its

first h elements). Further, for any queue p and h = 1, ...,m, let rh[i] = rh(p)[i] ∈ Z+

be the number of sub-agents of i who appear in the truncated queue ph.

Queueing allocations

Corresponding to p (feasible) queueing allocation π(p) is obtained as follows.
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Let Ω0 be the set of all feasible allocations Z = (Z1, ..., Zn) for the set N of agents,

where each share Zi = (zi1, ..., z
i
qi

)i is ordered in decreasing order of preferences of

agent i, and it is assumed that the sub-agents of i will be allocated objects from zi1

to ziqi in the same order in which they appear in the queue p.

For any h = 1, ...,m, define Ωh ⊂ Ωh−1 to be the set of all best for agent ph
allocations in Ωh, (those which give the sub-agent ph one of her best possible goods).

Finally, π(p) = Ωm.

Note: When all preferences are strict, this is simply the unique allocation where
each sub-agent, when it is her turn, picks the best for her object among still available

ones. When indifferences are present, the algorithm in the definition above could

return not a single allocation, but a set of feasible allocations. However, each agent

(and each sub-agent) will be indifferent between all allocations in π(p), so it is always

a singleton preferences-wise.

Given a queue p and an arbitrary feasible allocation Z = (Z1, ..., Zn), with all

Zi ordered as above, Zi = (zi1, ..., z
i
qi

)i (Z is not necessarily in π(p) or even OE!),

we may arrange the objects in A in the order they should be picked by sub-agents

in p so as to obtain Z. We denote this ordering by A(p, Z) = (b1, ..., bm). Here

sub-agents do not choose their best objects but rather those “prescribed”for them

by Z. Specifically, let ph be the l-th sub-agent of agent j in the queue p. She then

has to pick bh = zjl ∈ Zj = (zj1, ..., z
j
qj

)j.

If Z ∈ π(p) and all vectors Zi = (zi1, ..., z
i
qi

)i arrange objects in exactly the same

order as the one in which they are picked to obtain Z by queueing algorithm (this

is important!), then A(p, Z) is exactly the same order in which objects are picked

under the queuing algorithm.

3 Results

We start by establishing the equivalence between the set of all OE allocations and

the set of all allocations obtained by different queueing rules. By Lemma 3, the

following two statements are equivalent. We will prove the second one. For better
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understanding, we first present the proof for the case when orderings are strict, as

it is standard and relatively straightforward. When indifferences are allowed, the

argument is much more involved.

Theorem 1 A feasible allocation Z is OE if and only if there exists a queue p such
that Z ∈ π(p).

Theorem 2 A feasible allocation Z of m goods to m agents, each of whom is entitled

to one good, is PO if and only if there exists a queue p such that Z ∈ π(p).

Proof. (of Theorem 2)

“⇐=” Suppose that Z, resulting from some p = (p1, ..., pm), is not PO. Then

there is Z ′ which is better for all agents (weakly for all, and strictly for at least one).

Let (a1, ..., am)Z be the order at which objects in A are picked using the queue p

(resulting in our allocation Z). Thus, agent pk gets object ak. Let (a′1, ..., a
′
m)Z′ be

the ordering of A, obtained by asking agents to pick the objects allocated to them by

Z ′ in turn, according to p. Here agent pk gets object a′k. Let h be the first moment

in the queue when ah � a′h. Since Z
′ Pareto dominates Z, such a moment exists,

and it has to be a′h �ih ah. But this contradicts the definition of the queueing rule
(as agent h could get a better than ah object without harming agents in front of her

in the queue).

“=⇒”(For strict preferences) Fix a PO allocation Z, where each agent i gets an
object zi.

First, let each agent point at her (unique) best object in A, and let each object

point at the agent to whom it is assigned. If no agent would point at her own object,

then there would be a cycle. By assigning to each agent in this cycle the object to

which she points we would obtain a Pareto improvement for Z. Thus, there is an

agent who gets her best object at Z. Label her p1. Remove both agent p1 and the

object a1 she gets in Z, and repeat the same argument for N − p1 and A − a1. It

gives us agent p2, who gets her best object in A− a1; etc. After m steps we obtain

a queue p = (p1, ..., pm), with Z = π(p).
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“=⇒”(For domain with indifferences) Fix a PO allocation Z, where each agent
i gets an object zi. We will construct a queue p such that Z ∈ π(p).

Step 1. In any PO Z, there is an agent who is getting one of her best objects.

Indeed, if not, let each agent i point at one of her best objects (which are all strictly

better for her then zi), and let each object a point at the agent to whom it is assigned

(i.e., at i such that a = zi). Since there is an arrow coming out from each agent

and from each object, there will be a cycle. If we exchange items between agents

in this cycle, by giving each agent the object at which she points, we obtain Pareto

improvement.

Pick one of agents who gets her best object, and place her into the first position

p1 in the queue p. Obviously, Z ∈ Ω1 = Ω1(p1), the set of allocations which give this

agent i one of her best objects.

Step h. Assume that a truncated sub-queue of agents ph−1 is already chosen, and

Z ∈ Ωh−1 = Ωh−1(ph−1). Let Q = {p1., , , ph} ⊂ N and F = N −Q (“free agents”).

We will show that there exists an agent j ∈ F , such that the object she gets in
Z is (one of) the best she can get, provided that each agent k ∈ Q gets something

at least as good for this k as zk. We then will choose one of such agents j as next

agent ph in our queue p. This would guarantee Z ∈ Ωh = Ωh(p
h).

By contradiction, assume that there is no such agent j ∈ F . We will construct
the following bipartite oriented graph with 2m vertices, corresponding to m objects

and m agents.

—Let each object point to the agent to whom it is allocated under Z (so different

objects point to different agents!).

—Let each agent k ∈ Q point to all objects, equivalent for her to zk, the object

she gets at Z.

—Let each agent j ∈ F point to all the best objects she can get, provided that

any agent k ∈ Q gets an object at least as good for this agent k as zk. Note that

under our assumption all objects to which j points are strictly better for her then

zj.

Next, we construct a path along the arrows, j1, a1, j2, a2, j3, a3,... in the following

way. Start from an arbitrary agent j1 ∈ F .
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—For any object as on our path pick js+1 to be the unique agent at which it

points (the agent who gets this object under Z).

—For any agent js ∈ F on our path, pick as as any of the objects to which she

points.

—Let js ∈ Q (hence s > 1), while js−1 ∈ F . Agent js−1 points on our path to

the object as−1 she prefers to zjs−1 . By the definition of our graph, there exists an

allocation Y = Y (js−1), such that this agent js−1 gets in Y the object yjs−1 = as−1,

while every agent k ∈ Q gets in Y some object yk ∼ zk. Fix such Y , and continue

picking al = yji for agents jl on our path, as long as jl ∈ Q (i.e., until we encounter

an agent from F ).

Since our graph is finite, there will be a repeated vertex on this path, and hence

a cycle. If the first repeated vertex is an agent, jr1 = jr2 , r1 < r2, then this agent

is jr1 = j1 ∈ F (otherwise two different objects, ar1−1 and ar2−1, would point to the

same agent).

If the first repeated vertex is an object, ar1 = ar2 , r1 < r2, then we obtain a cycle

ar1 , jr1+1, ar1+1,...,jr2 , ar2 = ar1 . If all agents in this cycle are from Q, then there is

s∗ ≤ r1 such that js∗ ∈ F , while js∗+1,..., jr1 , jr1+1,..., jr2−1, jr2 = jr1 ∈ Q. Hence,
there exists an allocation Y = Y (js∗) such that ak = yjk for all k ∈ {js∗ , ..., jr2}. In
particular, on our path, yjr1 = ar1 = ar2 = yjr2 , which contradicts the fact that at Y

different agents get different objects.

Thus, at least one agent in our cycle is from F , and so she points at an object

in this cycle, which is strictly better for her then her object in Z. But then, we

can exchange items between agents in this cycle, by giving each agent the object at

which she points, and we obtain Pareto improvement, the desired contradiction.

After m steps we construct a full queue p. It is easy to see that Z ∈ Ωn = Ωn(p),

one of the (utility equivalent) allocations resulting from this queue.

We now turn to discuss fairness. We already know that to guarantee effi ciency

we must allocate objects by some queueing rule. Thus, we need to understand which

queues result in most fair outcomes.
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We will first introduce the notions of “fair”, or “balanced”, queues. Those are

queues p, where each agent approximately evenly spreads her sub-agents along the

queue, and no one is much ahead of someone else.

We will then show that balanced queues produce “fair” (up to one upgrade)

outcomes. Moreover, if one wants to use the same queue for all possible preferences,

and needs the outcome to be fair, one has to pick a balanced queue.

Definition 5
(i) A queue p is PROP balanced for agent i, iff any truncated queue ph contains at

least qi
m
h− 1 sub-agents of i: rh(p)[i] + 1 ≥ qi

m
h.

(i) A queue p is PROP’balanced for agent i, iff in any truncated queue ph we have
1
qi

(
rh(p)[i] + 1

)
≥ 1

m−qi (h− r
h(p)[i]), or, equivalently, rh(p)[i] + 1 ≥ qi

m
(h+ 1).

(iii) A queue p is EF balanced for agent i (with quota qi) w.r.t. agent j (with quota

qj), iff in any truncated queue ph we have 1
qi

(
rh(p)[i] + 1

)
≥ 1

qj
rh(p)[j].

EF balancedness requires that, at any step h in the queue, if one would add one

sub-agent to the total number of representatives of i in the truncated queue ph, then

the fraction of sub-agents of j in ph, related to the total quota of j, will not exceed

the fraction of sub-agents of i in ph, related to the total quota of i. The following is

very easy to see6.

Lemma 4 (1) A queue p is EF balanced for agent i w.r.t agent j, iff its sub-queue
pij, for qi + qj objects and 2 agents, obtained by deleting from p all sub-agents except

those of i and j, is EF balanced for agent i.

(2) For n = 2, EF balancedness for i is equivalent to PROP’balancedness for i.

For n > 2, EF balancedness is stronger.

(3) PROP’balancedness implies PROP balancedness (inverse is not true even for

n = 2).

We will show that, for any vector of quotas, there always exist such balanced “fair

queues”. Further, we will check that our “fair queues”guarantee our corresponding

approximate notions of fairness.
6Using the fact that, for any x, y1, ..., yk ≥ 0, if x ≥ yj for all j, then x ≥

∑
λjyj for any λj ≥ 0

with
∑
λj = 1.
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Existence follows from an explicit characterization of EF balanced queues, pro-

vided below. Those are queues p, for which, at any position h, an agent i is chosen

to be ph in the following way. We look at the truncated queue ph−1, and calculate for

each agent j what would be her number of sub agents in ph, relative to her quota qi,

if we would add her next. I.e. we calculate 1
qj

(
rh−1[j] + 1

)
for all agents j. Agent

i = ph has to be one for whom this expression is the smallest.

Theorem 3 Fix a set N of agents with quotas qi ∈ Z+, where
n∑
i=1

qi = m. The

following two statements are equivalent. Let p = (p1, ..., pm) be some queue of agents

(with repetitions).

(1) This queue p = (p1, ..., pm) satisfies quotas (each agent i appears there qi
times) and is EF balanced (for any agent and with respect to any agent).

(2) For any h = 1, ...,m we have ph ∈ arg min
i∈N

1
qi

(
rh−1[i] + 1

)
(here rh−1[i] =

rh−1(p)[i] is the number of times agent i appears in the truncated queue ph−1 =

(p1, ..., ph−1)).

Proof. (1) ⇒ (2) By contradiction, suppose h is the smallest position in the queue

p, such that 1
qi

(
rh−1[i] + 1

)
> 1

qj

(
rh−1[j] + 1

)
for agent i = ph and some agent j 6= i.

Then at the position h we have 1
qj

(
rh[j] + 1

)
= 1

qj

(
rh−1[j] + 1

)
< 1

qi

(
rh−1[i] + 1

)
=

1
qi

(
rh[i]

)
, so our queue p is not EF balanced for agent j with respect to agent i.

(2) ⇒ (1) Let p be constructed sequentially, by choosing an agent ph for each

next position h to be (one of) the agents for which 1
qi

(
rh−1[i] + 1

)
is the smallest.

First, no agent will get more then her quota positions in p, thus, once the whole

queue is constructed, each agent i appears exactly qi times.

Indeed, if rh−1[i] = qi, then 1
qi

(
rh−1[i] + 1

)
> 1, while for all agents j with

rh−1[j] < qj we have 1
qj

(
rh−1[j] + 1

)
≤ 1. At least one such agent j exists for any

h ≤ m, since
∑

i qi = m > h− 1. Thus, agent i will not be chosen as ph.

Second, we show EF balancedness by induction in h.

For h = 1, EF balancedness reduces to 1
qj
≥ 1

qp1
for all j 6= p1, which is true by

the choice of p1.

Let h ≥ 2, and ph = i. Since EF balancedness inequality was true up to h − 1,

we only need to check it at the position h, and for agents j 6= i with respect to agent
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i, the one for whom r·(·) changes: rh(i) = rh−1(i) + 1. But given the way i = ph is

chosen, we have 1
qi
rh[i] = 1

qi
r
(
h−1[i] + 1

)
≤ 1

qj

(
rh−1[j] + 1

)
.

Theorem 3 tells us that the EF balanced p are exactly those where at each step

h agent ph is one of i maximizing 1
qi

(
rh−1[i] + 1

)
.

Thus, the last n positions (pm−n+1, ...pm) in any EF balanced queue p will always

contain one sub-agent for each agent, and they can be ordered in any way. Indeed,

the last sub-agent of i may only appear in the queue after all other agents j got at

least qj − 1 positions each.

When all fractions ki
qi
, i ∈ N , 0 < ki < qi, are different, an EF balanced queue is

unique up to pm−n. Otherwise, we obtain a small well-defined family of fair queues7.

In particular:

Corollary 3.1 (the case of equal quotas)
Let all qi ≡ q and m = nq. A queue p is a (satisfying quotas) EF balanced queue,

if and only if each its sub-queue (pnk+1, ...p(k+1)n), for k = 0, 1, ..., q− 1, contains all

n agents.

Rephrasing, EF balanced queues for qi ≡ q are those which proceed in q rounds,

and in each round every agent has exactly one turn to choose an object (though in

different rounds agents may be ordered differently). We dub such queues “generalized

Round Robin”(gRR) ones.

Proof. (of Corollary 3.1)
By Theorem 3, under identical quotas, EF balancedness is equivalent to the

condition ph ∈ arg min
i∈N

1
qi

(
rh−1[i] + 1

)
= arg min

i∈N

(
rh−1[i] + 1

)
= arg min

i∈N
rh−1[i] for

all h = 1, ...,m.

“=⇒”Suppose p be EF balanced, but it is not a gRR. Let be the earliest round
p[k] = (pnk+1, ...p(n+1)k) be the earliest round in which some agent, say i, does not

appear Since rounds contain n agents each, there is an agent j who appears there

at lest twice. Let h be the position where agent j appears for the second time in p[k].

But then rh−1[i] = k < rh−1[j] = k + 1, a contradiction.

7We could further narrow it down to a singleton using some mild consistency/anonymity type
requirement, as is traditionally done in the literature on apportionment methods.
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“⇐=”Suppose p is a gRR. Let h = nk + t, 0 ≤ t < n, be a position within

k-th round p[k] = (pnk+1, ..., p(n+1)k) = (i1, ...., in). Then, for any agent il we have

rh−1[il] = k if l ≤ t, and rh−1[il] = k + 1 if l > t. Hence, ph = it ∈ arg min
i∈N

rh−1[i].

To see that fair queues guarantee fair allocations, we will need the following equiv-

alence result. As before, indifferences make the argument much more complicated,

so we give the proof for strict preferences first.

We use the following notation. Let S ⊂ A, and A = (a1, ..., an)�, the vector

of objects in A, ordered according to �, as a1 � ... � an. We define Rh(S)
def
=

S ∩ {a1, ..., ah}, the elements of S which are among top h objects from A according

to �.

Lemma 5 Let A be a set of m objects, B,C ⊂ A, and � be an ordering of A. Let
B = {b1, ..., bq}, C = {c1, ..., ck}, ordered so that b1 � ... � bq, c1 � ... � ck. Order

elements of A in decreasing order of � as x = (x1, ..., xm), with x1 � ... � xm, and

so that objects from B appear in x as early as possible while objects from T appear

in x as late as possible. Specifically, if b ∼ d ∼ c, b ∈ B\C, d ∈ B ∩ C, c ∈ C\D,
then a is before d and c, while d is before c.

The following two statements are equivalent:

(1) 1
q
|Rh(B)| ≥ 1

k
|Rh(C)| for all h = 1, ...,m, where Rh(S) = S ∩ {x1, ..., xh}.

(2) Expv B = 1
q

∑
b∈B

v(b) ≥ Expv C = 1
k

∑
c∈C

v(c) for any v : A → R which repre-

sents �.

Proof. (1) ⇒ (2) It is easy to see that any non-increasing function v : A → R

can be represented as v(x) =
n−1∑
h=1

µhχh(x) + γ, where χh : A → R are characteristic

functions of {x1, ..., xh} (i.e., χh(xi) = 1 if i ≤ h and χh(xi) = 0 otherwise), µh =

v(xh)− v(xh+1) ≥ 0, and γ = v(xn) is a constant.

Due to additivity of expectation operator, it is enough to show that (2) implies

(1) for v = χh. But this is immediate:

Expχh B = 1
q

∑
b∈B

χh(b) = 1
q
|Rh(B)| ≥ 1

k
|Rh(C)| = 1

k

∑
a∈A

χh(a) = Expχh C.

(2) ⇒ (1) (I) (For a strict ordering � )
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Suppose to the contrary, that for some h we have 1
k
|Rh(C)| = 1

q
|Rh(B)| + σ for

some σ > 0. Let v representing� be such that v(x) ∈ [1−ε, 1] for x ∈ {x1, ..., xh} and
v(x) ∈ [0, ε] otherwise, where ε > 0 is very small. We have 1

q

∑
b∈B

v(b) ≤ 1
q
|Rh(B)| +

1
q
(q− |Rh(B)|)ε ≤ 1

q
|Rh(B)|+ ε, while 1

k

∑
c∈C

v(c) ≥ 1
k
|Rh(C)|(1− ε) ≥ 1

k
|Rh(C)| − ε.

Choosing ε < 1
2
σ, we obtain a desired contradiction to (2).

(2) ⇒ (1) (II) (For an arbitrary ordering � )
Extending notation, we will use |R0(S)| def= 0, |RM(S)| def= |Rm(S)| = |S| for

M > m.

Fix h. Let H = {xr1 , ..., xr2} = {a ∈ A : a ∼ xh}. Thus, xr1−1 � xr1 ∼ ... ∼
xr2 � xr2+1, (it can be that r1 = 1 and/or r2 = m).

Using the same reasoning as in (I), we can show that 1
q
|Rg(B)| ≥ 1

k
|Rg(C)| for

g = r1 − 1 and g = r2.

Let HB = H ∩ (B\C), HC = H ∩ (C\B), HBC = H ∩ (B ∩ C). In the ordering

x, the objects from HB come first, followed by the objects from HBC , and the last

ones are the objects from HC . Let xl be the last in x object from HB (l = r1 − 1 if

HB = ∅), xf1 and xl1 be the first and last in x objects from HBC (if HBC = ∅ then
let f1 = f − 1 and l1 = l + 1), and xl be the first in x object from HC (f = r2 + 1 if

HC = ∅). Here l < f ; if HBC 6= ∅, we have l < f1 < l1 < f . Now:
1
q
|Rg(B)| ≥ 1

q
|Rr1−1(B)| ≥ 1

k
|Rr1−1(C)| = 1

k
|Rg(C)| for g ∈

{
r1 − 1, ..., f1 − 1

def
= g1

}
,

since we have Rg(B) ⊃ Rr1−1(B), Rr1−1(C) = Rg(C).
1
q
|Rg(B)| = 1

q
|Rr2(B)| ≥ 1

k
|Rr2(C)| ≥ 1

k
|Rg(C)| for g ∈

{
l1 + 1

def
= g2, ..., r2

}
,

since we have Rg(B) = Rr1−1(B), Rr2(C) ⊃ Rg(C).

If HBC = ∅ then also 1
q
|Rg(B)| ≥ 1

k
|Rg(C)| for f1−1 ≤ g ≤ l1 + 1 (neither Rg(B)

nor Rg(C) change when g moves from f1 − 1 to l1 + 1), and (1) is true.

Let HBC 6= ∅. For any g, g1 ≤ g ≤ g2, we have |Rg(B)| = |Rg1(B)| + Kg,

|Rg(C)| = |Rg1(C)|+Kg, where Kg = |{xg1+1, ..., xg} ∩HBC |.
Suppose |Rg1(B)| = 0. Given that 1

q
|Rg1(B)| ≥ 1

k
|Rg1(C)|, we have |Rg1(C)| = 0,

and so |Rg(B)| = |Rg(C)| for g1 ≤ g ≤ g2. Since 1
q
|Rg2(B)| ≥ 1

k
|Rg2(C)| = 1

k
|Rg2(B)|,

we have 1
q
≥ 1

k
. Hence, 1

q
|Rg(B)| ≥ 1

k
|Rg(B)| = 1

k
|Rg2(C)|, and (1) is true.

Suppose |Rg1(B)| > 0.
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We will use the following observation: Suppose Let y ≥ 0, z > 0.

If y ≤ z then yδ ≤ zδ, so y(z + δ) ≤ z(y + δ) and y
z
≤ y+δ

z+δ
for any δ > 0.

If y ≥ z then yδ ≥ zδ, so y(z + δ) ≥ z(y + v) and y
z
≥ y+δ

z+δ
for any δ > 0.

Thus, for any given y and z, y+δ
z+δ

is monotone in δ for δ > 0. Hence, for any

γ ∈ (0,∆),

min
{
y
z
, y+∆
z+∆

}
≤ y+γ

z+γ
≤ max

{
y
z
, y+∆
z+∆

}
.

Rewrite the above inequalities as |R
g1 (C)|

|Rg1 (B)| ≤
k
q
, |R

g2 (C)|
|Rg2 (B)| =

|Rg1 (C)|+Kg2

|Rg1(B)|+Kg2
≤ k

q
, for

g1 = f1 − 1 < l1 + 1 = g2. By the observation above,
|Rg(C)|
|Rg(B)| = |Rg1 (C)|+Kg

|Rg1(B)|+Kg
≤ max

{
|Rg1 (C)|
|Rg1 (B)| ,

|Rg2 (C)|
|Rg2 (B)|

}
= k

q
, for any g, g1 ≤ g ≤ g2, so (1) is

true.

We are now ready to demonstrate fairness of balanced queues.

Theorem 4 (1) If a queue p is PROP balanced for agent i, then agent i satisfies
oPROPu1 in (any allocation from) π(p).

(2) If a queue p is PROP’balanced for agent i, then agent i satisfies oPROP’u1

in (any allocation from) π(p).

(3) If a queue p is EF balanced for agent i against agent j, then agent i is oEFu1

w.r.t. agent j in (any allocation from) π(p).

(4) A queue p is PROP <PROP’, EF w.r.t. agent j> balanced for agent i, iff it

is oPROPu1 <oPROP’, oEFu1 w.r.t. agent j> for any preferences �i.

Proof. To check (1) and (2), fix a preference profile � over A and a queue p. Recall
that rh[i] = rh(p)[i] is the number of sub-agents of i in the truncated queue p.

Note that, for any agent i and any h = 1, ...,m, no matter other agents’prefer-

ences, a sub-agent of i, whose turn in the queue p is no later then h, will always pick

one of i’th top h objects.

Let Zi = {z1, ..., zqi} = (z1, ..., zqi)i, with z1 �i ... �i zqi , be the allocation for
agent i in a Z ∈ π(p); here her l-th sub-agent gets zl. Let her post-upgrade share be

Zu
i ∈ arg max

{
ui(Zi), ui(Z

ba
i ) : a ∈ Zi, b /∈ Zi

}
.

Order objects in A according to i’s preferences, as A = (a1, ..., am)i, with a1 �i
... �i am, so that objects from Zi appear in this ordering as early as possible and in the
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same order as (z1, ..., zqi)i. As before, R
h(S) = S ∩ {a1, ..., ah}. For any h = 1, ...,m,

no matter other agents’preferences, zrh[i] �i ah (according to p, zrh[i] is chosen by

i when some of {a1, ..., ah} are still available). Thus, Rh(Zi) ⊃ {z1, ..., zrh(p)[i]} and
|Rh(Zi)| ≥ rh[i]. Further:

If Zu
i = Zi (upgrades are not useful), then Zu

i = Zi = {a1, ..., aqi} —top qi objects
in A. In this case, |Rh(Zu

i )| = |R(Zu
i )| = min{h, qi} ≥ qi

m
h (since both h ≥ qi

m
h and

qi ≥ qi
m
h).

If Zu
i 6= Zi, we may assume Zu

i = {z1, ..., zqi−1} ∪ {b}, where b is the earliest
object in A = (a1, ..., am)i which does not belong to Zi. Order Zu

i = (b1, ..., bqi)i in

the same way as how those objects appear in A. Let b = bk, zqi = al. Note that

(b1, ..., bk)i = (a1, ..., ak)i, —top k objects in A, so b = bk = ak.

PART (1). Let p be PROP balanced for i, so rh[i] + 1 ≥ qi
m
h for all h = 1, ...,m.

Agent i is oPROPu1 iff 1
qi

∑
z∈Zui

vi(z) = ui(Z
u
i ) ≥ ui(A) = 1

m

∑
s∈A

vi(s) for all vi

compatible with �i. By Lemma 5, it is equivalent to 1
qi
|Rh(Zu

i )| ≥ 1
m
|Rh(A)| = h

m
,

or to |Rh(Zu
i )| ≥ qi

m
h, for all h = 1, ...,m.

So, if Zu
i = Zi = (a1, ..., aqi)i, then oPROPu1 is true.

Suppose Zu
i = {z1, ..., zqi−1} ∪ {b}.

Case 1 When 1 ≤ h < k, we have Rh(Zu
i ) = Zu

i ∩ {a1, ..., ah} = {a1, ..., ah}, so
|Rh(Zu

i )| = h ≥ qi
m
h.

Case 2 When k ≤ h < l, we have Rh(Zu
i ) = Rh(Zi) ∪ {b}, so |Rh(Zu

i )| =

|Rh(Zi)|+ 1 ≥ rh[i] + 1 ≥ qi
m
h.

Case 3 When l ≤ h ≤ m, we have Rh(Zu
i ) = Zu

i , so |Rh(Zu
i )| = qi ≥ qi

m
h.

PART (2). Let p be PROP’balanced for i, so rh(p)[i] + 1 ≥ qi
m

(h + 1) for all

h = 1, ...,m.

Agent i is oPROP’u1 iff 1
qi

∑
z∈Zui

vi(z) = ui(Z
u
i ) ≥ ui(A\Zi) = 1

m−qi

∑
s∈A\Zi

vi(s)

for all vi compatible with �i. By Lemma 5, it is equivalent to 1
qi
|Rh(Zu

i )| ≥
1

m−qi |R
h(A\Zi)| = 1

m−qi (h−|R
h(Zi)|), for all h = 1, ...,m. When |Rh(Zu

i )| = |Rh(Zi)|,
this rewrites as |Rh(Zu

i )| ≥ qi
m
h.

If Zu
i = Zi, we have oPROP’u1.

Suppose Zu
i = {z1, ..., zqi−1} ∪ {b}.
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Case 1 When 1 ≤ h < k, we have Rh(Zu
i ) = Rh(Zi) = {a1, ..., ah}, so |Rh(Zu

i )| =
h ≥ qi

m
h, and we have oPROP’u1.

Case 2 When k ≤ h < l, we have Rh(Zu
i ) = Rh(Zi) ∪ {b}, so |Rh(Zu

i )| =

|Rh(Zi)|+1. Thus, oPROP’u1 is equivalent to 1
qi

(|Rh(Zi)|+1) ≥ 1
m−qi (h−|R

h(Zi)|),
or (|Rh(Zi)| + 1) ≥ qi

m
(h + 1). But this follows from PROP’balancedness, since

|Rh(Zi)| ≥ rh(p)[i].

Case 3 When l ≤ h ≤ m, we have Rh(Zu
i ) = Zu

i , so |Rh(Zu
i )| = |Rh(Zi)| = qi ≥

qi
m
h, and we have oPROP’u1.

PART (3). By Lemma 4 (1), we can assume n = 2. But, for n = 2, EF

balancedness is the same as PROP’balancedness (Lemma 4 (2)), while EFu1 is the

same as PROP’u1 (Lemma 2 (1)). So PART (3) follows from PART (2).

PART (4). Fix a queue p. Let all agents have the same binary preferences �h

with a1 ∼h ... ∼h ah �h ah+1 ∼h ... ∼h am. Say, v(ak) = 1 for 1 ≤ k ≤ h (“good”

objects), v(ak) = 0 for k > h (“bad”objects). In any allocation resulting from p,

first h sub-agents will get “good”objects, and others will get “bad”objects. Thus,

for any agent i her utility from such allocation is ui = rh(p)[i]
qi

.

By contradiction, assume p does not satisfy one of our properties, so for some h

the corresponding inequality is not satisfied. Pick corresponding preference profile

�h, and let Z = (Z1, ..., Zn) ∈ π(p) be an allocation resulting from p under those

�h. Let Zu
1 be a post upgrade bundle for i, where she can at most substitute one

“bad”object by one “good”one.

—Suppose p is not PROP balanced for an agent i, so rh(p)[i] + 1 < qi
m
h. Then we

have ui(Zu
i ) ≤ rh(p)[i]+1

qi
< 1

qi

qi
m
h = 1

m
h = ui(A), and no oPROPu1.

—Suppose p is not PROP’balanced for an agent i, so 1
qi

(
rh(p)[i] + 1

)
< 1

m−qj (h−
rh(p)[i]). Then we have ui(Zu

i ) ≤ rh(p)[i]+1
qi

< 1
m−qj (h − r

h(p)[i]) = ui(A\Zi), and no
oPROP’u1.

—Suppose p is not EF balanced for an agent i w.r.t. an agent j, so 1
qi

(
rh(p)[i] + 1

)
<

1
qj
rh(p)[j]. Then we have ui(Zu

i ) ≤ rh(p)[i]+1
qi

< 1
qj
rh(p)[j] = ui(Zj), and no oEFu1.

Finally, as a corollary of the theorems above, we can formulate our existence

result: OE and ordinal fairness are compatible.
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Theorem 5 OE and oEFu1 (and hence oPROP’u1 or oPROPu1) allocations always
exist. In particular, all Z in π(p) for an EF balanced p satisfy those properties for

any ordinal profile �.

Let us now discuss ordinal allocation rules F :� 7−→ Z = (Z1, ..., Zn). We assume

that a rule can be multi-valued, but it is sinlge-valued in utilities. Given an ordinal

preference profile �, it produces a set of allocations, such that any agent is ordinally
(i.e., in the strong sense) indifferent between all allocations in this set.

As always, a rule is OE/PROP/EF, etc., iff any its outcome satisfies such prop-

erty.

Given a preference profile �, all OE allocations are generated by some queues.
Hence, any OE allocation rule F can be described by specifying which queue is chosen

for each preference profile. Let f :� 7−→ p. Then F = Ff :� 7−→ π (f(�)).

Of course, a queue does not have to be fair to generate a fair allocation. For

example, suppose agents have completely different preferences. Say, each agent i has

a set Si of exactly qi objects as her top indifference class in her �i, and those sets Si
form a partition of A (i.e., they are disjoint). In this case, any queue would result in

fully fair allocation (S1, ..., Sn), where each agent receives her best basket.

However, suppose that we want to use the same queue for all preferences profiles.

This might be the case when we want to agree on a fair and effi cient method of

allocation before we know agents’preferences, or even before we know who are the

agents. We could be, for example, writing an institutional policy, which then will be

applied in a variety of situations. This defines the set of rules {Fp : p = (p1, ..., pn)}
to choose from.

Theorem 4 (3) tells us that, if we want to guarantee oEFu1 for all profiles, we have

to choose an EF balanced queue. And such a queue is essentially unique (recall that

it is unique up to (m − n)-th position when all fractions r
qi
, with i ∈ N , 1 ≤ r ≤ qi

are different). Thus:

Corollary 4.1
—Each OE F is defined by f :� 7−→ p = p(�), with F (�) = π (p(�)).
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—There exist OE and oEFu1 (and hence oPROPu1) allocation rules F :� 7−→
Z = Z(�).

—Among rules Fp, defined by f being a constant, Fp is oEFu1 iff p is EF balanced

queue.

4 Further Discussion

We believe that ordinal setting is an appropriate approach to the discrete fair division

models. Ordinal design prevails in the real life, when full cardinal information is too

reach. The advantages of simple input are twofold. Agents are not required to

transmit or even to formulate complete cardinal preferences, but only need to figure

out their ordering of options. Principal can propose a simple rule which is easily

understood, and thus generates more trust among the agents. He also faces less

computational problems.

In our setting, when the sizes of agents’bundles are fixed, this approach allowed

us to describe effi cient and fair rules. While similar ideas to achieve fairness by using

queues were recently also considered in cardinal setting, effi ciency did not was not

discussed.

In the cardinal setting, under our fixed quotas assumption, the existence of fully

effi cient (PO) and fair (PROPu1 or EFu1) allocations is a diffi cult open problem. In

particular, contrary to the traditional model, we can have fully effi cient allocations

where some pairs of agents envy each other.

Example 1 N = {1, 2}, A = {d, b, s}; q1 = 2, q2 = 1.

Let u1(d) = 10, u1(b) = 9, u1(d) = 0; u2(18) = 18, u2(b) = 1, u2(d) = 0.

Allocation S1 = {d, s}, S2 = {b} is PO, but agents envy each other.

Combining PO and oPROPu1/oEFu1 is too strong. One cannot guarantee the

existence of an allocation which would satisfy both.

Example 2 N = N = {1, 2}, q1 = q2 = 4, A = {a1, ..., a8}. Both agents have the
same strict preferences a1 � ... � a8. Any PO Z allocation is also OE so it results

from some queue p, i.e., Z = π(p). If an allocation is also oEFu1, then this queue p
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has to be a gRR. Thus, p consists of four rounds, and in each round agent 1 picks

one object and agent 2 picks one object. Hence, each agent gets one object from

each of four sets {a1, a2}, {a3, a4},{a5, a6} ,{a7, a8}. But this allocation is no PO for
all valuations compatible with �.
Indeed, let agent 1 believe that only a1, a2 are valuable objects, while agent 2 think

that a1, ..., a6 are valuable. Corresponding valuations (compatible with �) are as
follows. Pick small ε > 0. Let v1(a1), v1(a2) ∈ [1− ε, 1] and v1(a3), ..., v1(a8) ∈ [0, ε],

while v1(a1), ..., v1(a6) ∈ [1− ε, 1] and v1(a7), v1(a8) ∈ [0, ε].

We have u1(Z1) ≤ 1 + 3ε, u2(Z2) ≥ 3 + ε. For ε < 1
5
, both agents prefer

allocation Y1 = {a1, a2, a7, a8}, Y1 = {a3, a4, a5, a6}, where they get u1(Y1) ≥ 2− 2ε,

u2(Z2) ≥ 4(1− ε).

For our model, we propose new definitions of approximate fairness, stronger then

standard PROP1/EF1, and more uniform — they apply equally well to cases of

“goods”, “chores”, or mixed objects. One might ask whether at least some posi-

tive results from preceding cardinal setting literature (with no size constraints, or

under different feasibility restrictions) still go through under those definitions. In

the unconstrained setting though, up to one upgrade or up to one flip notions seem

too strong. A simple example is when all agents are (almost) indifferent between

all objects, and the number of objects is not a multiple of a number of agents, say

m = kn+ r, 0 < r < n. The most fair way is to give some agents k objects and some

others k+ 1 objects. An agent with k objects would envy anyone with k+ 1 objects,

no matter how many “upgrades”or “flips”she is allowed.

Further, in unrestricted setting, “disregarding an object b outside a share S”and

“adding to S an object b ∈ S”mean the same thing in terms of envy. However,

under different quotas, it results in different properties. We could thus consider

comparisons “up to one downgrade”. For, example, define EFd1:

In an allocation Z agent i does not envy agent j “up to one downgrade”, if either

ui(Zi) ≥ ui(Zj) or there exists a “downgrading”Zab
j of Zj (for some a ∈ Zi, b ∈ Zj)

such that ui(Zi) ≥ ui(Z
ab
j ).

EFd1 is neither stronger nor weaker than our EFu1; the relationship depends on
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which of qi and q2 is larger.

Example 3 Let n = 2, m = 5, q1 = 2, q2 = 3, A = {a, b, c, d, e}, and v1 = v2 = v

with v(a) = v(b) = v(c) = 1, v(d) = 1.1, v(e) = 0.9.

In the allocation Z1 = {a, e}, Z2 = {b, c, d}, agent 1 does not envy agent 2 after

the upgrade to ZU
1 = Zde

1 = {a, d}. However, agent 1 would envy agent 2 even after

the worst downgrade of Z2 to ZD
2 = Zed

2 = {b, c, e}.
In the allocation Y1 = {a, d}, Y2 = {b, c, e}, agent 2 does not envy agent 1 after

after the downgrade of Z1 to ZD
1 = Zed

1 = {a, e}. However, agent 2 would envy agent

1 even after the best upgrade of Z2 to ZU
2 = Zde

2 = {b, c, d}.

Up to one downgrade approximations seem less natural than our notions, but one

might still wish to investigate their implications for various settings.

In our model with quotas, it gives us very similar results. We can define:

A queue p “EFD balanced”is for i w.r.t. j iff 1
qi
rh(p)[i] ≥ 1

qj
(rh(p)[j]− 1).

The same reasoning as before gives us that:

—EFD balanced queues are exactly those where each next ph ∈ arg min
i∈N

1
qi
rh−1(p)[i].

—If a queue is EFD balanced for i w.r.t. j, then i oEFd1 w.r.t. j.

—If a queue guarantees oEFd1 for all preferences, then it is EFD balanced.
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